

がん細胞のバリア破壊による治療抵抗性の改善

岐阜薬科大学 生命薬学大講座 生化学研究室 五十里 彰

がんの統計データ

日本におけるがんデータ

がんの罹患数 :87.6万人(2013年)

がんによる死亡者数:37.3万人(2017年)

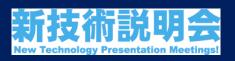
部位別では肺がんが最も多い

がんの医療費 : 4兆2500億円(2017年)

抗がん剤市場 : 1兆円 → 2025年には1兆4000億円

平成29年 厚生労働省 人口動態調査 国立がんセンターがん対策情報センター 富十経済

世界におけるがんデータ


がんの罹患数: 1800万人(2018年)

がんによる死亡者数: 960万人(2018年)

がんの医療費 : 60兆円

World Cancer Report 2020

非小細胞肺がんの薬物療法の変遷

1970		1980	1990		2000	20	10
第1世代		•••••	第3世代	•	分子標的藝		
	クロホスファミド パクリタキセル ゲフィチニ		(EGFR阻害剤				
			ケフィチニン エルロチ:				
第2世代			ゲムシタヒ		上ルロリ.		アチニブ
カ ム ピーV エトポシド							〈阻害剤)
ビンデシン			<i>₩</i> / \			•	リゾチニブ
細胞障害性抗がん剤 (免疫CP阻害					SCP阳害部(
ファーストライン							
第1世代 + 第2世代 シスプラチン + プラチナ製剤 + 第3世代 第2世代							

臓器別治療

ゲノム医療

EGFR-TKI

がん治療の問題点

1. 既存の抗がん剤に対して低感受性のがん(難治がん)が存在する。

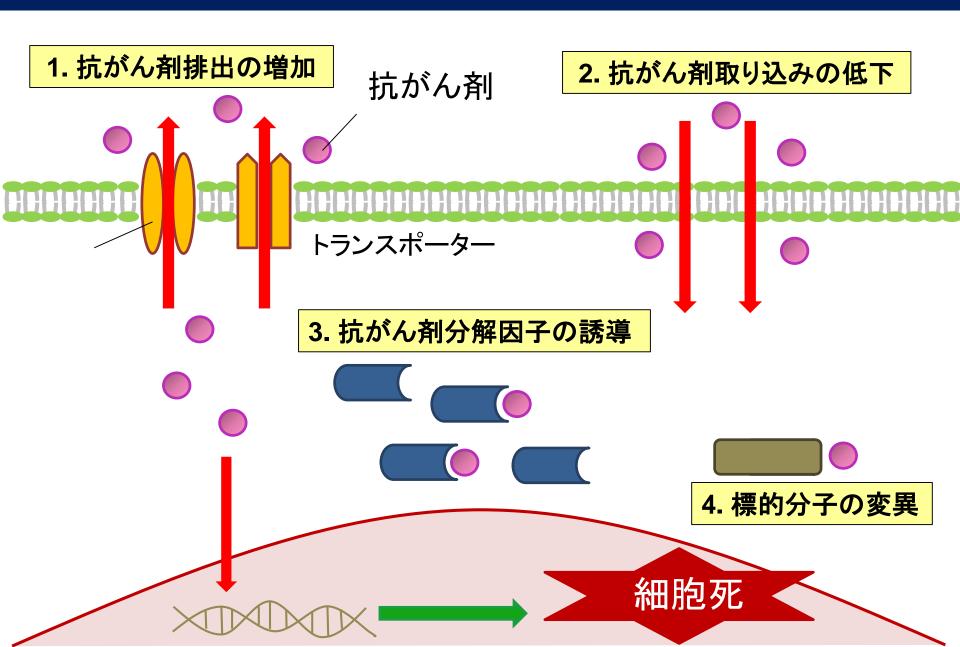
プラチナ製剤の多剤併用療法の奏功率は約37%

Kubota K et al., J Clin. Oncol. (2004)

EGFR-TKIの治療対象となる肺腺がん患者は約53%

Kohno T et al., Nat. Med. (2012)

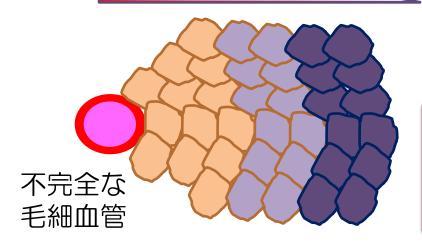
2. 抗がん剤耐性を改善する治療薬がない


P-糖タンパク質阻害剤:ゾスキダル

3. がんの再発を予防する薬がない

既存の抗がん剤の感受性を回復・亢進させる薬剤が治療奏功率を向上させ、医療費の高騰を防ぐ。

治療抵抗性の獲得機序


がん微小環境の形成による 治療抵抗性の獲得

栄養素

抗がん剤

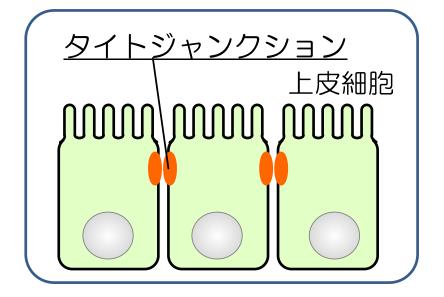
がん微小環境

低酸素度の亢進

低栄養度の亢進

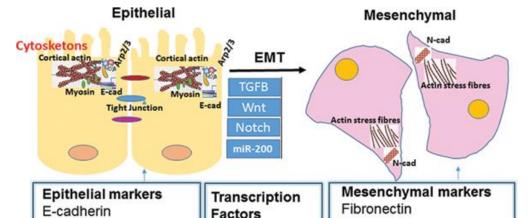
抗がん剤濃度の低下

微小環境内部のがん細胞は


- ✓ ストレス環境により薬剤抵抗性が高い
- ✓ 親水性薬剤の透過性が低い
- ✓ 高分子量の薬剤の透過性が低い

新たな標的分子と薬剤の開発

クローディン(CLDN)の特徴



タイトジャンクションの構成因子

- CLDN1~27
- オクルディン

タイトジャンクションの役割

- 細胞増殖の制御
- 分化の制御
- 細胞間透過性の制御

Snail

Slug

bHLH

Twist1/2

Zeb1/2

FSP1

Vitronectin

Smooth-muscle actin

FGFR2 IIIb and IIIc specice

Vimentin

variants

Claudins

Mucin-1

Occludins

Desmoplakin

Cytokeratin-8, -9, -18

細胞間接着構造の消失による上皮間葉転換 (EMT)が、 増殖・浸潤・転移能の獲得 に重要である。

Zhang X et al., Cytoskeleton (2017)

CLDNの発現は低下するのか?

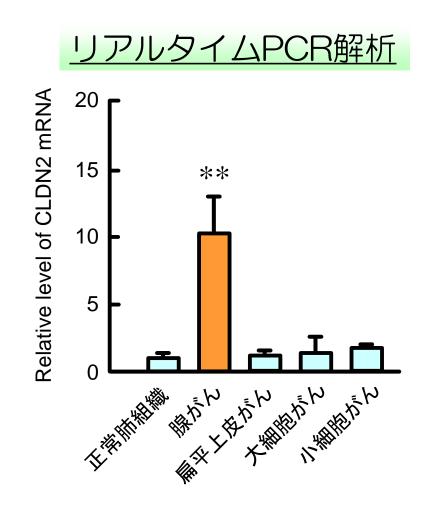
がん組織におけるCLDNサブタイプの 異常発現

多くの固形がん組織でCLDNsが高発現する

CLDNs	組織
CLDN1	大腸、胃、前立腺、 肝臓、膵臓
CLDN2	大腸、肝臓、食道
CLDN3	胃、肺、腎臓、 精巣、卵巣
CLDN4	腎臓、精巣、卵巣、肺、 胃、膵臓、甲状腺
CLDN5	肺、膵臓
CLDN6	胃

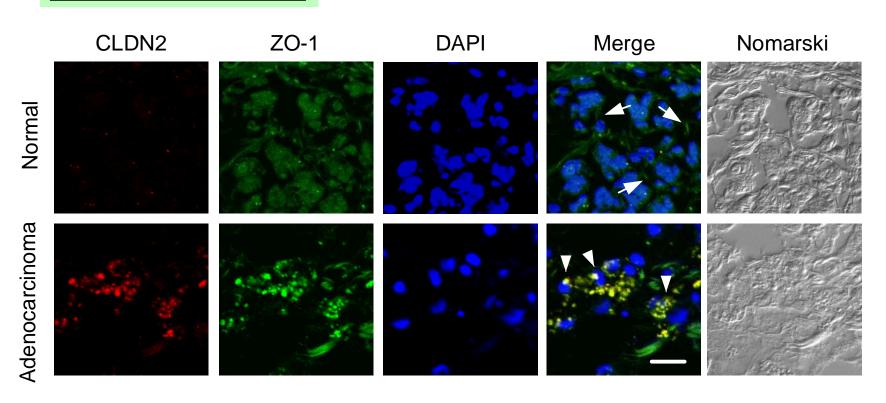
CLDNs	組織
CLDN7	胃、大腸、舌、卵巣 甲状腺、乳房、肝臓
CLDN9	胃
CLDN10	肝臓、肺
CLDN12	大腸
CLDN16	卵巣、乳房
CLDN18	肺、膵臓

Tabaries S *et al.*, Oncogene (2017) Ding L *et al.*, Canc. Manag. Res. (2013)

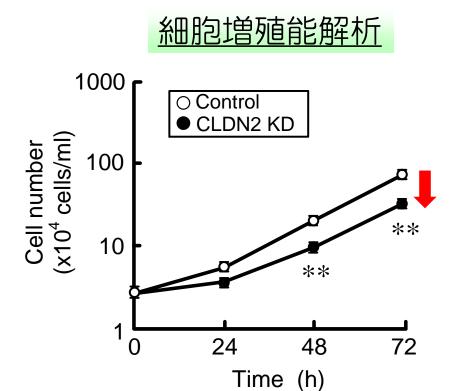

正常組織に未発現・低発現のCLDNサブタイプが高発現することにより、がん細胞のタイトジャンクションの機能を変化させる。

肺がん治療の新たな分子標的:CLDN2

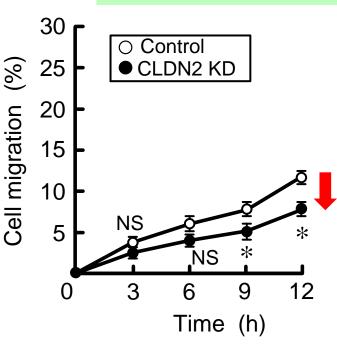
Lung Cancer cDNA Array (OriGene 社)


		患者数
男性	59	
女性	31	
正常	12	
がん種		
腺がん	I	21
	II	8
	III	12
	IV	4
扁平上皮がん	I	11
	II	10
	III	4
	IV	1
大細胞がん	I	2
	II	1
	Ш	1
小細胞がん		1
	III	2

肺腺がん組織でのCLDN2タンパク質の分布



Ikari A et al., Biochim. Biophys. Acta (2012)


肺腺がん組織にCLDN2タンパク質が高発現する。

CLDN2のノックダウンによる 細胞増殖の抑制

細胞浸潤能解析

Ikari A et al., Life Sci. (2010)

CLDN2発現の増加

增殖能 1

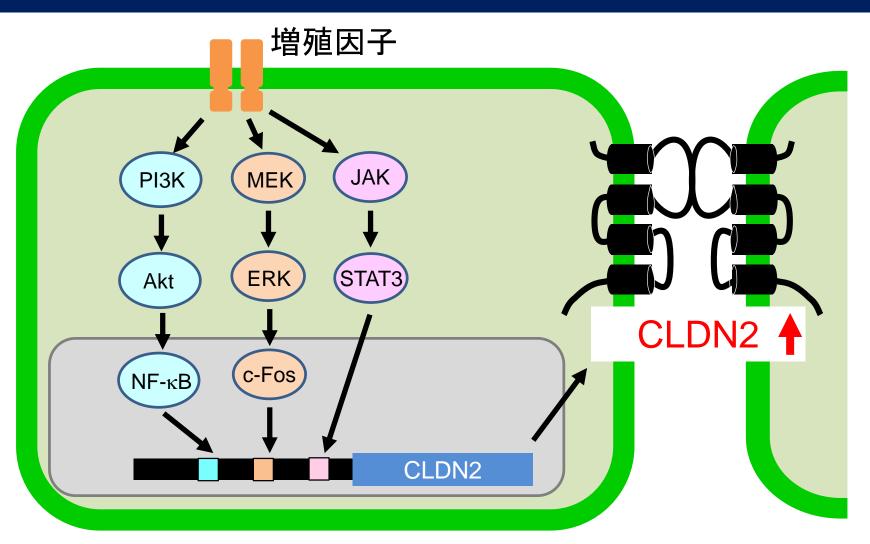
浸潤能

CLDN2発現を低下させる食品成分

ケルセチン Nutrients (2015) ルテオリン

ケンフェロール

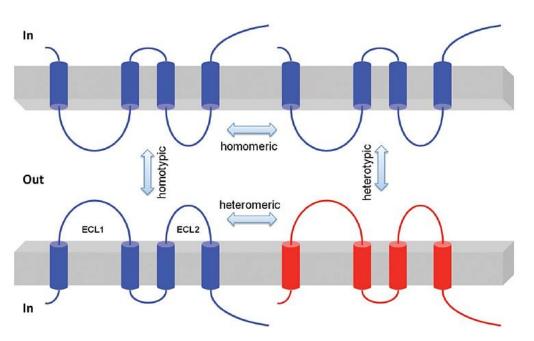
Nutrients (2017)


ケンフェリド Nutrients (2020) HO HO

カフェ酸フェネチルエステル J. Nutr. Biochem. (2018)

食品成分の作用はCLDN2に選択的でない。

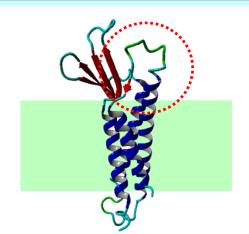
CLDN2発現の増加機構



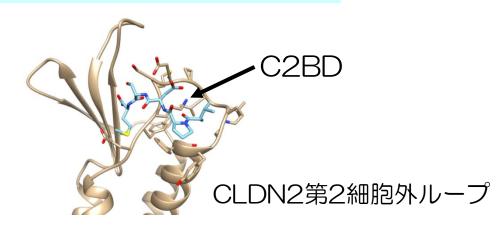
細胞内シグナルの阻害では特異性が低い。 正常細胞の働きにも影響を及ぼす。

CLDN結合性低分子化合物の探索

CLDNが形成するポア


第1細胞外ループ:イオン選択性

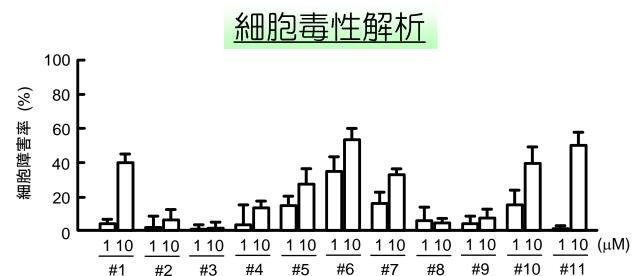
第2細胞外ループ:サイズ選択性


500 Da程度までの 低分子は通過が可能

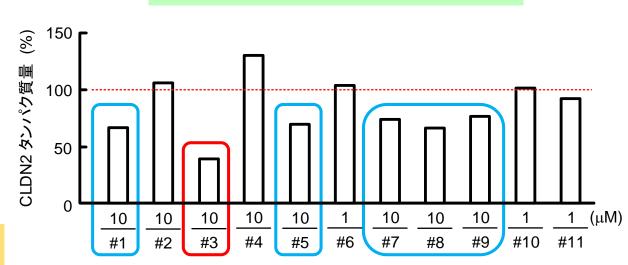
Hou J, Tissue Barriers (2015)

CLDN2の推定立体構造

Claudin-2 Binding Drugs



CLDN2の発現を低下させるC2BDの探索

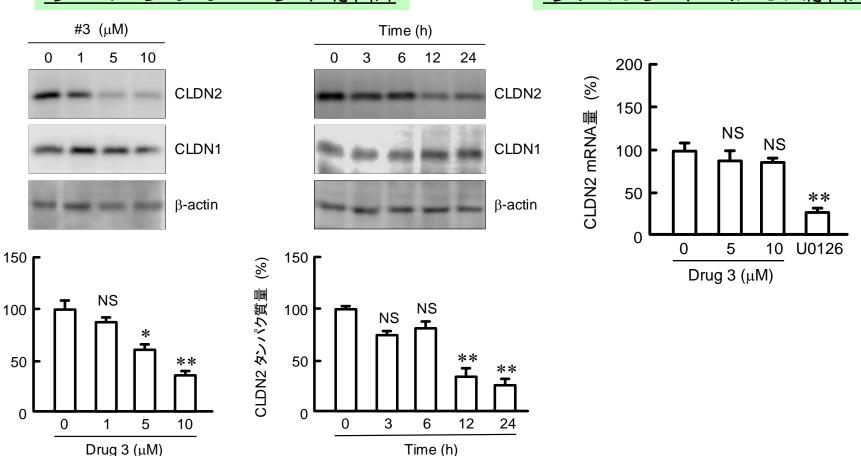


<u>ドッキング</u> シミュレーション

順位	化合物名	
1	#1	
2	Acyclovir	
3	#3	
4	Fluphenazine	
5	#5	
6	Deslanoside	
7	#7	
8	#8	
9	#9	
10	Paliperidone	
11	Lomitapide	

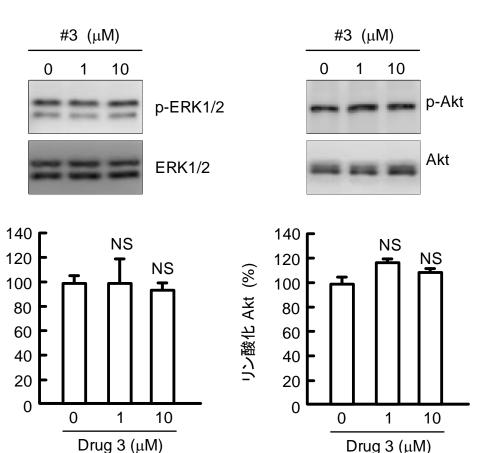
<u>ウエスタンブロット解析</u>

化合物3(#3)を選定

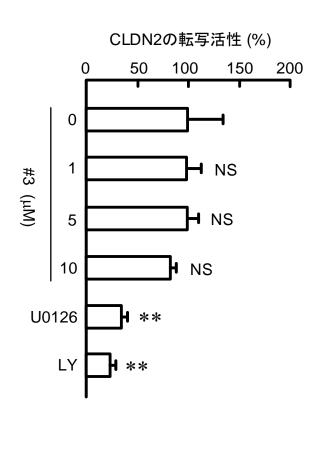

#3の濃度・時間依存的効果

CLDN2 タンパク質量 (%)

リアルタイムPCR解析


#3は、濃度・時間依存的にCLDN2のタンパク質量を低下さ、 CLDN1は影響を受けなかった。また、mRNA量も変化しなかった。

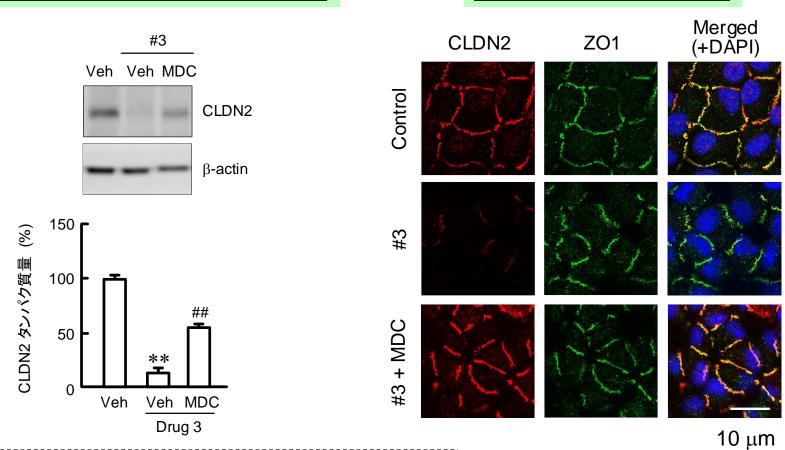
シグナル伝達に対する#3の効果



ウエスタンブロット解析

ンソ製化 ERK1/2

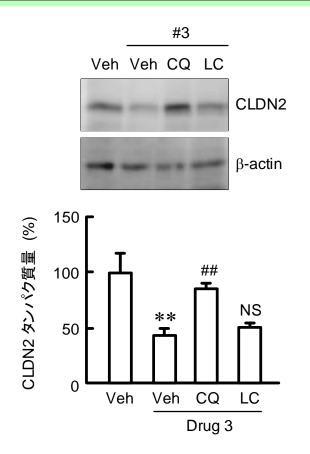
レポーター解析


#3は、細胞内シグナル伝達因子の活性やCLDN2の転写活性を変化させなかった。

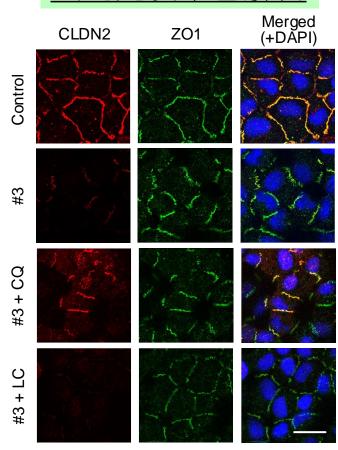
エンドサイトーシス阻害剤の効果

ウエスタンブロット解析

蛍光免疫染色解析

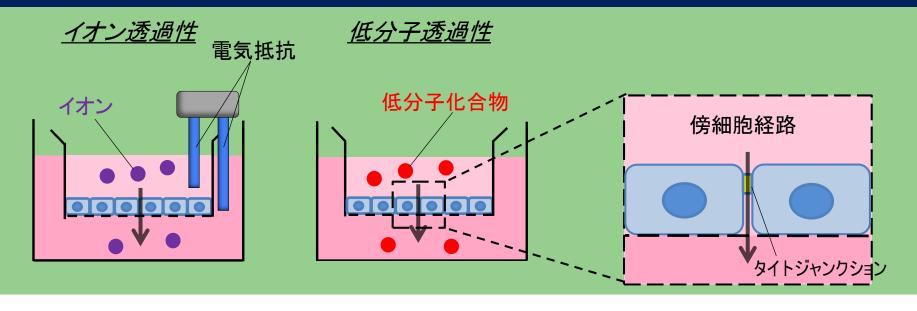

MDC: クラスリン依存性エンドサイトーシス阻害剤

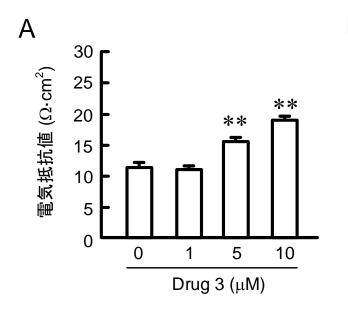
#3は、クラスリン依存性経路を介してCLDN2の エンドサイトーシスを促進する。

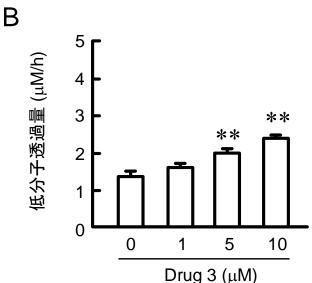

リソソーム阻害剤の効果

<u>ウエスタンブロット解析</u>

蛍光免疫染色解析

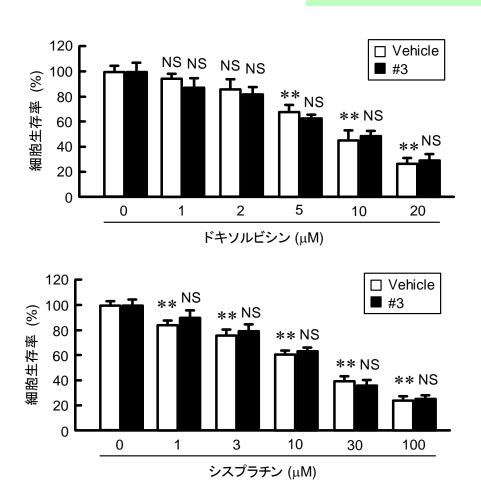

10 μm

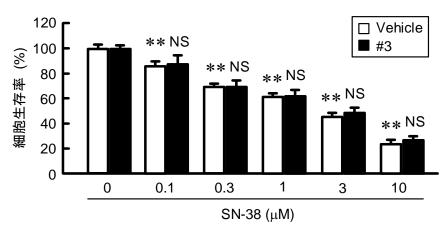

CQ:リソソーム阻害剤、LC:プロテアソーム阻害剤


#3は、リソソームにおけるCLDN2の分解を促進する。

細胞間透過性に対する#3の効果

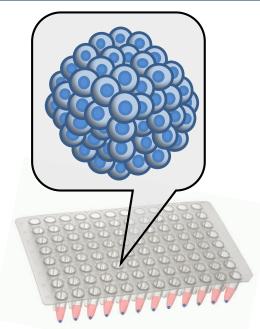


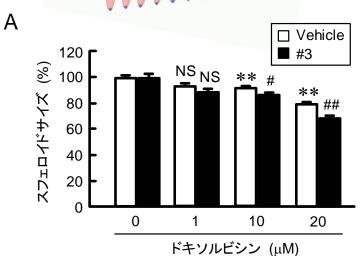



#3は、イオン透過性を低下させたが、 低分子化合物の透過性を増加させた。

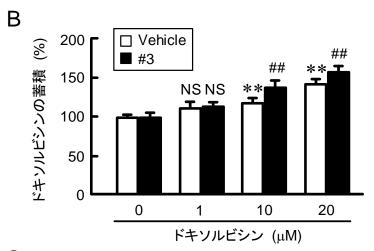
抗がん剤感受性に対する#3の効果 ①

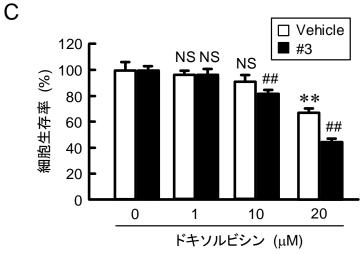
抗がん剤感受性(2D)



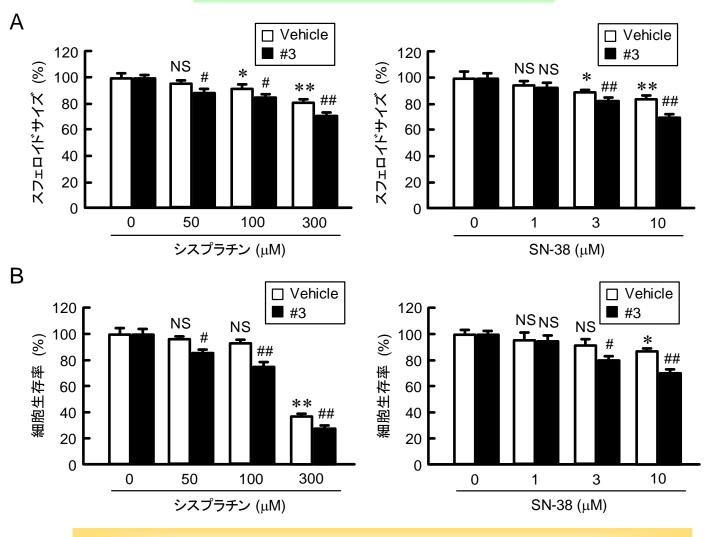

SN-38:イリノテカン活性代謝物

2次元培養下で、#3は抗がん剤感受性を変化させなかった。


抗がん剤感受性に対する#3の効果②



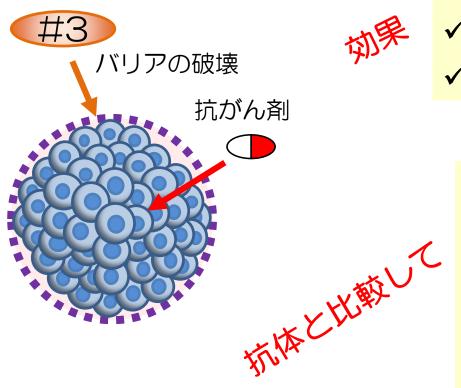
抗がん剤感受性(3D)



3次元培養下で、#3はドキソルビシン感受性を増強した。

抗がん剤感受性に対する#3の効果③




抗がん剤感受性(3D)

#3はシスプラチン、SN-38感受性も増強した。

#3の効果とメリット

- ✓ 肺腺がん細胞の増殖を抑制
- ✓ 肺腺がん細胞の浸潤を抑制
- ✓ 抗がん剤感受性を亢進

- ✓ 化学合成が可能である
- ✓ 製造コストが安い
- ✓ 高い品質が保証される
- ✓ 免疫原性が少ない
- ✓ 細胞間を通過しやすい

C2BDの利用拡大

CLDN2の高発現が原因となる疾患の治療薬としての利用

他臓器がんへの利用

大腸、肝臓、食道がん組織にCLDN2が高発現する。

Li J *et al.*, Oncotarget 8, 96249-96262 (2017) Ding L *et al.*, Cancer Man. Res. 5, 367-375 (2013)

がん再発予防薬としての利用

CLDN2は大腸がん幹葉細胞の自己複製能を促進する。

Paquet-Fifield S et al., Cancer Res., 78, 2925-2938 (2018)

炎症性腸疾患への利用

潰瘍性大腸炎やクローン病患者の腸管にCLDN2が 高発現する。

Luettig J *et al.*, Tissue Barriers 3, e977176 (2015)

C2BDの応用と企業への期待

薬や機能性食品成分の経皮吸収を促進

皮膚の表皮角化細胞の細胞間バリアは、CLDN1やCLDN4などで 形成される。

Furuse M et al., J. Cell Biol. 156, 1099-1111 (2002)

難吸収性薬剤の吸収改善、経口投与が難しい患者への投与

薬や機能性食品成分の腸管吸収を促進

ウェルシュ菌エンテロトキシンの受容体結合領域は腸管のCLDN4に結合し、薬剤の腸管吸収を促進する。

Kondoh M et al., Mol. Pharmacol. 67, 749-756 (2005)

難吸収性薬剤の吸収改善、機能性食品成分の吸収促進

経皮吸収型製剤や経腸吸収製剤を開発製造される企業と、吸収促進剤の開発に向け、共同研究を希望。

本技術に関する知的財産

発明の名称:抗がん剤抵抗性改善作用を有する

クローディン-2結合性低分子化合物

出願番号:特願2020-18075

出願人:岐阜市

発明者: 五十里 彰、松永 俊之

お問い合わせ先

岐阜薬科大学

事務局庶務会計課

TEL: 058-230-8100

FAX: 058-230-8200

E-mail: syomuk@gifu-pu.ac.jp