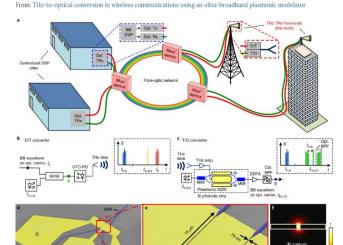


5Gの次へとつながる テラヘルツ波位相制御技術

理化学研究所 光量子工学研究センター テラヘルツ光源研究チーム 客員研究員

大野 誠吾

令和2年5月26日



研究背景(1): 6G THz-wave communication (Beyond 5G)

5G の次の規格に向けた動きが世界で加速

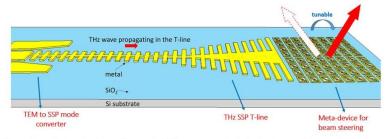
- 米連邦通信委員会(FCC)が6Gとその後の 未来への準備
 - 95GHz 3THz 周波数帯の開放を決定
 - 米国5Gでの対中劣勢を6Gで巻き返しへ
- NTTが100Gbpsの通信に成功
 - NTTドコモ6G構想発表
- KITのグループ、プラズモニックデバイスで テラヘルツから光波への変換に成功 (50Gbps)

Fig. 1: Seamless integration of THz wireless links into fibre-optic infrastructures by direct O/T and T/O conversion.

Nature Photonics **13**, 519 (2019)

ドコモ、6Gに向けた技術コンセプト(ホワイトペーパー)公開 (2020.1.22) $_1$

研究背景(2) THz波オンチップの取り組み



表面プラズモンポラリトンを用いた結合

伝送線路から空間伝搬モードへ

Figure 1: A CMOS THz communication I/O link, which is fed by THz spoof-surface-plasmon (SSP) THz transmission lines (T-line).

From: On-chip sub-terahertz surface plasmon polariton transmission lines with mode converter in CMOS

While on-chip oscillator network can only generates TEM-wave source, the high output power of beam steering antenna relies on a highly efficient mode conversion to transform the TEM mode to SS mode with low loss in a wide band. The proposed converter is featured by a linearly flaring GCPW with gradient groove.

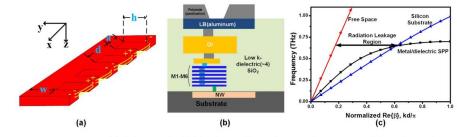
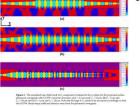



Figure 2. (a) The layout and E-field distribution of the on-chip SPP T-line, parameters d, h, a, w denotes the periodic pitch, groove depth, groove width and line width of SPP T-line, respectively, (b) metal configuration of back-end-of-line (BEOL) in standard 65 nm CMOS technology, and (c) simulated dispersion diagram considering the high index substrate effect.

Liang, Y. et al., Scientific Reports, 6, 30063 (2016).

フォトニック結晶導波路を用いたセンサー応用

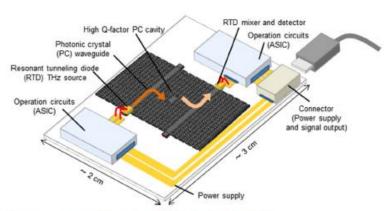
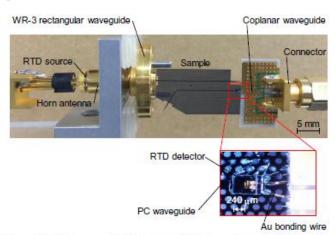
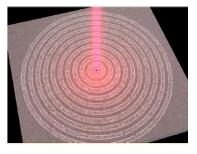


Fig. 1 Schematic image of THz sensing module based on PC slab and RTD

Since 1917

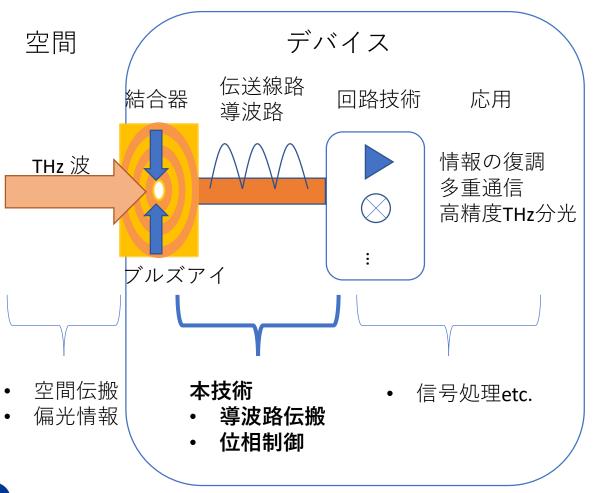



Fig. 11 Photograph of THz system using RTD source and RTD detector integrated with PC sample

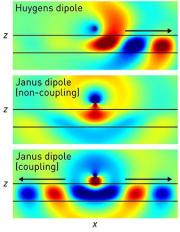
空間とデバイスの結合ブルズアイ構造を用いた場合

ブルズアイ構造

- 同心円状の回折格子
- 中心に波長スケール以下の貫通穴
- 空間伝搬波と表面プラズモンを共鳴的 に結合
- 表面プラズモンを介した**超集光**が可能
- プレーナ型デバイス

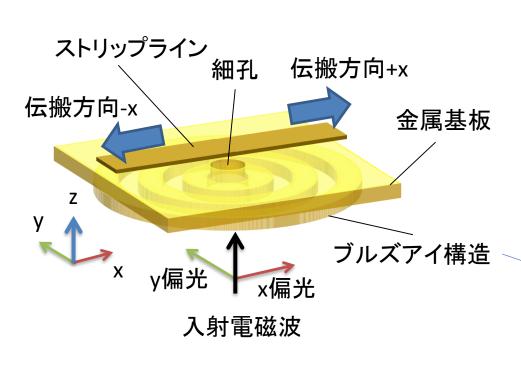

ACS Photonics, **1**, 365–370 (2014)

J. J. Appl. Phys, 44, L929 (2009)

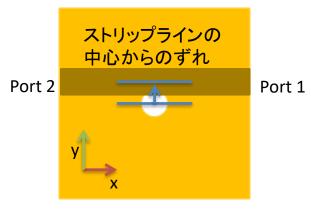


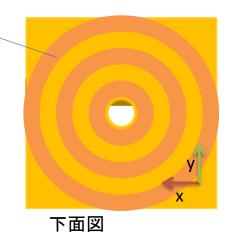
ブルズアイ+導波路構造の機能性

双極子モードから導波路 への結合 @光波領域

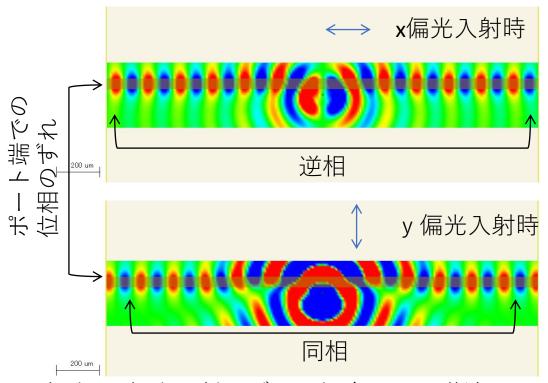


OPTICS & PHOTONICS NEWS (DEC. 2019) 58. Michela F. Picardi, et al., Phys. Rev. Lett. **120**, 117402 (2018).




考える系ブルズアイ+導波路構造の 機能性

+x方向、-x方向に導波路内を伝わる 電磁波の位相調べる


上面図

シミュレーション結果

条件 円孔サイズ: 100 μm

基板材料PEC

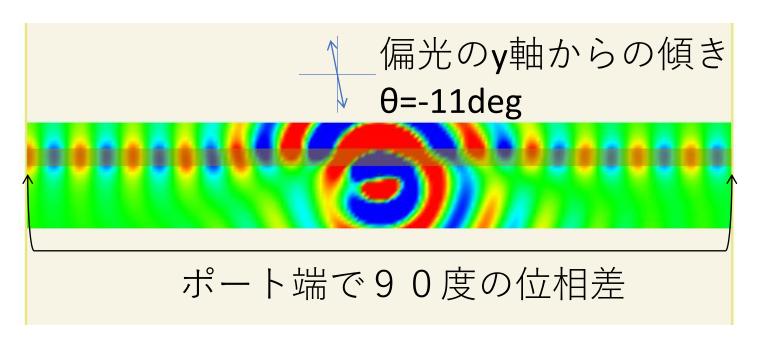
ストリップライン 幅: 50 μm 厚さ: 10 μm 基板からの高さ:

 $35 \mu m$

材料: PEC

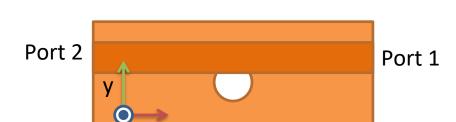
周波数: 2 THz

- X偏光、y偏光入射いずれの場合も同じ導波モードで伝搬する
- X偏光、y偏光でポート端での位相が逆相と同相になる


同じモード間では波の重ね合わせが成り立つから伝搬波の 位相差を入射波の偏光方向によって任意に制御可能

シミュレーション結果 その2

入射偏光方向を制御した場合



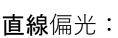
偏光方向の傾きによって任意の位相差を設定可能

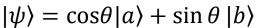
モデル化

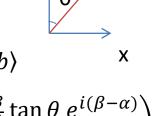
|a>:y 励起時にできる状態(偶)

|b>:x 励起時にできる状態(奇)

$$|a\rangle = \begin{pmatrix} E_{\text{Port1}} \\ E_{\text{Port2}} \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-i\omega t} \qquad a = Ae^{i\alpha}$$

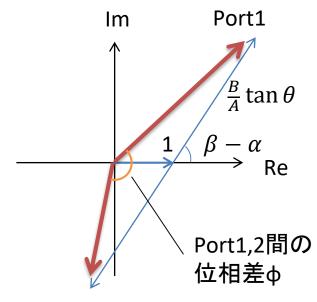

$$|a\rangle = \begin{pmatrix} E_{\text{Port1}} \\ E_{\text{Port2}} \end{pmatrix} = a \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{-i\omega t} \qquad a = Ae^{i\alpha}$$


$$|b\rangle = \begin{pmatrix} E_{\text{Port1}} \\ E_{\text{Port2}} \end{pmatrix} = b \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-i\omega t} \qquad b = Be^{i\beta}$$



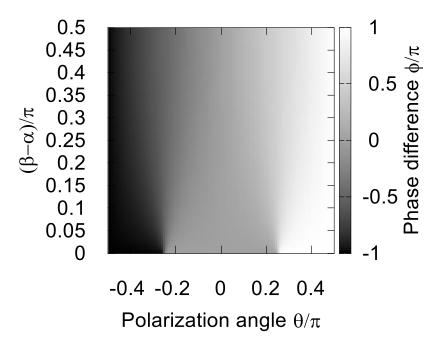
A,B: 導波路モードへの結合効率

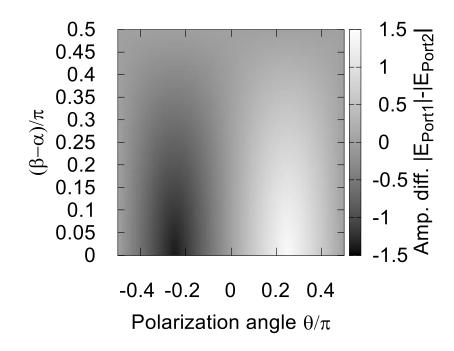
α,β: 結合時の位相ずれ



$$= A \cos \theta \ e^{i\alpha} \begin{pmatrix} 1 + \frac{B}{A} \tan \theta \ e^{i(\beta - \alpha)} \\ 1 - \frac{B}{A} \tan \theta \ e^{i(\beta - \alpha)} \end{pmatrix}$$

ポート間の位相差




Port2

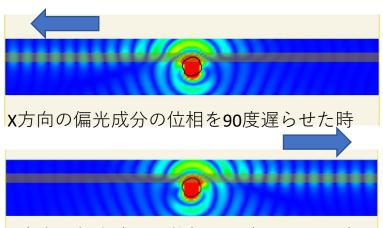
α,βに差があれば偏光方向によって 自在に位相差の設定可能

入射偏光角と位相、強度の関係モデル化

位相差

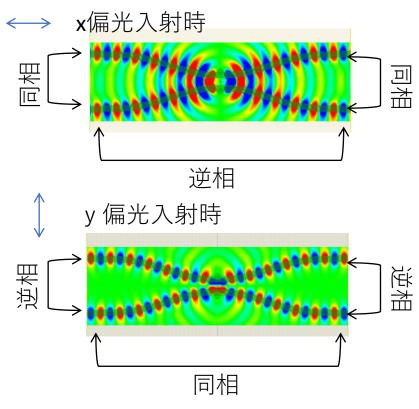
強度差

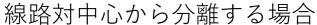
 β - α は π /2に近いほど偏光回転に対して滑らか位相が変化し、 強度の差は小さい



応用例

ポート間のスイッチング


Ex:Ey = 1:5のまま **Ex**の 位相を±**90**度ずらす



X方向の偏光成分の位相を90度はやめた時

偏光状態により出力 先をスイッチ可能

多ポート化

まとめ

- テラヘルツ帯通信技術は6G通信の要
 - 空間からデバイスへ導くアンテナ技術
 - 導波路伝搬技術
- ブルズアイ+導波路構造
 - 直線偏光方向を変えるだけでポート間の位相制御が可能
- 次世代の通信技術の基盤になりうる発明
- 応用
 - 偏光状態で伝搬方向制御の可能性
 - 多ポート化の可能性
 - 別の周波数帯への展開

新技術の特長・従来技術との比較

- 従来技術: そもそも存在しない
 - THz帯の材料の損失、構成の複雑さ、コストが要因
 - 電気光学変調器:材料の吸収大
 - 共鳴効果:帯域が狭い
- 新技術
 - 高効率
 - 空間→点光源:ブルズアイ構造で給電点に集められる
 - 低損失:偏光を使うためデバイスの挿入損失がない
 - シンプル、小型、薄型
 - 広帯域(原理的にいずれの波長でも制御可能)
 - 偏光制御技術を転用可能 ⇒ 高精度に位相制御

想定される用途

- テラヘルツ帯ロックインアンプ
 - 参照信号の位相の制御に活用
- テラヘルツ任意偏光の発生
 - 逆過程の活用し伝送線路からTHz波を入れて任意 の偏光状態のTHz波を発生
- 多重通信
 - 偏光状態ごとにポートを切り替える
- アレイ化
 - 複数を並べることでフェーズドアレイアンテナを 形成
 - ピクセルごとに異なる偏光を受信できるカメラ

実用化に向けた課題

- 実証実験
 - デバイス作製
 - 6Gへ向けてサブテラヘルツ帯の設計
 - ・特性評価の手法の確立
 - 構造最適化

• 社会実装

企業への期待

- デバイス作製技術
 - MEMS、フォトリソ技術の応用
 - 基板:シリコン、ポリマー、石英など*小型デバイスを試作して広く使ってみてもらいたい
- 規格の策定
- 広く電磁波の位相制御技術を求めている企業 との共同研究
 - 偏光の方向と位相の 1 対 1 対応がつくので位相が 高安定
 - マイクロ波、ミリ波へも応用可能
 - 機械加工での試作

本技術に関する知的財産権

• 発明の名称:

電磁波制御装置、電磁波制御方法、

及び電磁波伝達装置

• 出願番号 : 特願2020-030068

• 出願人 : 国立研究開発法人理化学研究所

• 発明者 : 南出 泰亜、大野 誠吾、時実 悠

お問い合わせ先

理化学研究所 科技八ブ産連本部 産連連携部 産業連携推進課

株式会社理研鼎業 ライセンス部

email t-soudan @ riken.jp

