

高精度な距離・形状測定を実現する TOF距離イメージセンサ

静岡大学 電子工学研究所 ナノビジョン研究部門 イメージングデバイス分野 助教 安富 啓太

令和2年11月5日

従来技術の課題

現在は三角測量を基にした計測が主流 (ステレオ計測、光切断、パターン光投影…) →カメラ間or 光源-カメラ間の距離 (ベースラインが必要)

- ヘッドサイズの小型化に制限
- 影(オクルージョン)の発生
- 計測対象との距離を調整する必要あり (精度、距離分解能が距離に依存する)

TOF-3Dスキャナの強み

距離分解能向上のため主要技術

直接TOF法と間接TOF法

Many electronics is required in unit pixel. High pixel count is difficult

Relatively simple structure

間接TOF法

間接TOF法

クロック分配の技術 カラム並列Digital-DLLによるスキュー補正

 $\Lambda \int_{\Delta} 12$

距離計測結果の例

Spec.	JSSC '11	ISSCC '12	ISSCC '14 [SU]	ISSCC '14 [SU]	ISSCC '18	Work [SU1]	This work [SU2]
Technology [um]	0.18	0.13	0.11	0.11	65nm- BSI	0.11	0.11
Pixel no.	80x 60	480 x360	480x 360	480x 360	1024x 1024	132x120 (310x120)	192x4 (256x8)
Pixel pitch [um ²]	10	10	14	14	3.5	22.4	22.4 x 67.2
Wavelength [nm]	850	850	850	850	860	473	473
Accumulation time	50ms	10ms	45ms	45ms	<33ms (30fps)	13ms/ 33ms	33ms
Range resolution @Measured distance	50mm @1m	5mm @1m	5.5mm @80cm	5.5mm @80cm	0.8mm @40cm	0.25 mm @32mm	0.06 mm @25mm

取得した3D画像

取得した3D画像

3Dスキャン例

6個の点群データ からメッシュを作 成し、合成

2020/11/11

距離分解能の信号依存性

No. 19

新技術の特徴・従来技術との比較

- 従来のTOF距離イメージセンサでは、数mm 程度の距離分解能(精度)で計測用途には不 十分であったが、提案する技術によって 100µm以下の距離分解能を達成した。
- これにより、小型・高速・柔軟な測距レンジ調整(長WD)な3次元計測デバイスの実現が期待される。
- 今後、センサ内のジッタを改善することで
 10µm程度まで改善することが期待できる。

想定される用途

 ・非接触な3次元測定:工業計測、検査、リバー スエンジニアリング、製造分野における検査

- ロボットのセンシング、ロボットピッキングなど
- ・歯科用スキャナ、内視鏡など医療応用への発展も期待できる。

実用化に向けた課題

- 現在はキーとなるイメージセンサの技術開発が主であり、原理検証が済んでいる段階。距離分解能として、70µmまで実証済み。より高距離分解能化に取り組み中。
- ・光学系などの簡素化
- 計測ニーズに合わせたセンサ開発 (画素サイズ、画素数など)
- 現在は数100µWの光源を利用しているため、
 取得レートが遅い。高出カなレーザあるいは
 並列化によって、高速化を図る。

- 具体的なニーズに向けた共同研究・開発
 センサのカスタマイズにより新たな価値
- 高出力な光源(~100ps程度の短パルス)

本技術に関する知的財産権

- ・ 発明の名称:距離計測装置
- 出願番号 :2013-100657 (特許第6265346)
- 出願人
- 発明者

- :静岡大学
- :川人祥二、安富啓太

関連する発明

- イメージセンサ,特許第6501403,静岡大学、川人祥二、安富啓太
- 距離計測装置,特開2020-003250,静岡大学、安富啓太、川人祥二

お問い合わせ先

静岡大学 イノベーション社会連携推進機構

TEL 053-478 - 1718FAX 053-478 - 1711e-mail sangakucd@cjr.shizuoka.ac.jp

25