

イメージセンサ用カラム並列3段 パイプラインA/D変換器

静岡大学 電子工学研究所 ナノビジョン研究部門 イメージングデバイス分野 特任教授 袴田 正志

令和2年11月5日

従来技術と課題

• 従来技術

8K(7680×4320)スーパーハイビジョンは、2018年12月 からNHK BSデジタルで本放送が開始されている。

現状、番組制作は60コマ/秒(fps)で行われているが、ス ポーツなど被写体の動きが速い場合は、フルスペック規 格(120fps)で撮影できるイメージセンサが求められた。

本研究室で開発された巡回型AD変換方式は、高速性が特徴のAD変換方式ではあるが、12bit以上を1段、1水 平期間内で実現するのは困難であったため、AD変換を 上位ビットの前段と下位ビットの後段に分け、それぞれ の巡回型AD変換器を、1水平期間前の下位ビットと、現 水平期間の上位ビットとが並行してAD変換されるように 2段パイプライン化した。これにより後段の精度が低くて 済むようになったため、後段の回路規模が縮小可能とな

- り、高速性と低消費電力を両立したAD変換器が実現できた。(特許第5769178号)
- 課題

スローモーション撮影に必要な120fps以上の高速化には、8Kで120fps、即ちカラム並列AD変 換で1回当たり1.92 µ s(≒(1/120)/4320)より短い変換時間に対応できなければならないが、2 段パイプラインでは困難であるため、さらなる高速化の技術が求められた。

新技術の特徴・従来技術との比較

- 2段パイプライン → 3段パイプラインによる高速化。
- 追加する3段目を非巡回型とすることで、消費電力を 抑制。
- さらに、AD変換を行う際のサンプル・ホールドのタイ ミング等を、他段のAD変換回路の遷移期間からずら すことによって、一方のAD変換回路の動作の影響か ら発生するノイズ(例えば、ホールドノードに寄生容量 などを介して混入するノイズ)による他方のAD変換 回路で生成および出力されるデジタル値及び残差値 の精度の低下を防止し、その結果として、AD変換の 精度を向上させる。

新技術の特徴(画素アレイとカラムAD変換器)

新技術の特徴(巡回型AD変換回路(1))

カラム線(COL)から巡回型二段目までの回路例

巡回型一段目の動作

新技術の特徴(巡回型AD変換回路(2))

V_{OP(i)}

②サブ AD 変 換 初期格納(S)動作 ① 前段の演算値Vopをキャ 巡回型のAD変換特性(演算値Vopと 回路52 パシタ56、57、58に格納する (a) が V_{OP} か _38 1巡回毎のサブADのデジタル値D) らデジタ ル信号D V_{RCH} VRH を生成 \dot{C}_{3a} V_{RCL} 35 V_{COM} D=1 C_{3b} VOP 52 57 55 V_{COM} D=2 D=0 ③ サブAD変換回路52からのデジタ 演算(A)動作 ル信号DよりDA変換値を生成 58 (b) 56 C_{3a}=C_{3b}=C₄/2の場合 D=0のとき $V_{R}=V_{RH}$ DAC VRL D=1のとき $V_{\rm R} = (V_{\rm RH} + V_{\rm RI})/2$ VRI VRCL 0 VRCH VRH C_{3b} ر 54 D=2のとき $V_{\rm R}=V_{\rm RI}$ 繰 汳 l V_{OP(i-1)} 55 57 V_{COM} ④ 2倍増幅及びDA変換 $V_{OP(i)} = 2 \times V_{OP(i-1)} - V_R$ 値との残差値を生成 (C) ⑥サブ 格納(S)動作 V_{RCH} AD 変 換 C4 -58 回路52 ⑤ 演算値V_mを 56 C_{3a} V_{RCL} がレ。。か キャパシタ56、57 らデジタ 58に格納する C_{3b} -0 V_{0P} ル信号D 52 を生成 57 55 V_{COM}

巡回型二段目の動作

新技術の特徴(3段目非巡回型)

逐次比較(SAR)型

逐次比較(SAR)型

シングルスロープ型

新技術の特徴(変換タイミング)

新技術の実施実績(1)

SUMMARY OF SPECIFICATIONS

Item	Values
Fabrication technology	45 nm 1P4M pixel / 65 nm 1P5M logic
Supply voltage	1.2/2.5 V (digital), 2.5/2.8 V (analog)
Image size	8.448 mm (H)×4.752 mm (V)
Chip size	14 mm (H)×10 mm (V)
Number of effective pixels	7,728 (H)×4,368 (V)
Pixel size	1.1 μm×1.1 μm (2×2-shared pixel)
Frame rate	240 fps (maximum)
Conversion time period	0.92 μs
ADC resolution	12 bit
ADC DNL	+0.76/-0.85 LSB
ADC INL	+0.90/-11.33 LSB
Conversion gain	92 μV/e ⁻
Sensitivity	0.55 V/lx·s (w/o ML & CF, CIE A-light, IR cut filter)
Full well capacity	5,700 e ⁻
Random noise	4.5 e ⁻ _{rms} (gain: 1.0) at 240 fps 3.6 e ⁻ _{rms} (gain: 4.0) at 240 fps
PRNU	<1.3% (dead-line free)
Power consumption	3.0 W at 240 fps

DESIGN OF 12-b CYCLIC-CYCLIC-SAR ADC

T. Arai, T. Yasue, K. Kitamura, H. Shimamoto, T. Kosugi, S. Jun, S. Aoyama, M-C. Hsu, Y. Yamashita, H. Sumi, S. Kawahito, "A 1.1µm 33Mpixel 240fps 3D-Stacked CMOS Image Sensor with 3-Stage Cyclic-Based Analog-to-Digital Converters," 2016 International Solid-State Circuits Conference (ISSCC 2016), 2016 Digest of Technical Papers pp.126-127, San Francisco, CA, USA San Francisco Marriott Marquis 2016.2.1

T. Arai, T. Yasue, K. Kitamura, H. Shimamoto, T. Kosugi, S-W. Jun, S. Aoyama, M-C. Hsu, Y. Yamashita, H. Sumi, S. Kawahito, "A 1.1-µm 33-Mpixel 240-fps 3D-Stacked CMOS Image Sensor with 3-Stage Cyclic-Cyclic-SAR Analog-to-Digital Converters," IEEE Transactions on Electron Devices Volume 64, Issue 12, Dec. 2017

新技術の実施実績(2)

DNL(微分非直線性) at 240fps

INL(積分非直線性) at 240fps

T. Arai, T. Yasue, K. Kitamura, H. Shimamoto, T. Kosugi, S. Jun, S. Aoyama, M-C. Hsu, Y. Yamashita, H. Sumi, S. Kawahito, "A 1.1µm 33Mpixel 240fps 3D-Stacked CMOS Image Sensor with 3-Stage Cyclic-Based Analog-to-Digital Converters," 2016 International Solid-State Circuits Conference (ISSCC 2016), 2016 Digest of Technical Papers pp.126-127, San Francisco, CA, USA San Francisco Marriott Marquis 2016.2.1

T. Arai, T. Yasue, K. Kitamura, H. Shimamoto, T. Kosugi, S-W. Jun, S. Aoyama, M-C. Hsu, Y. Yamashita, H. Sumi, S. Kawahito, "A 1.1-µm 33-Mpixel 240-fps 3D-Stacked CMOS Image Sensor with 3-Stage Cyclic-Cyclic-SAR Analog-to-Digital Converters," IEEE Transactions on Electron Devices Volume 64, Issue 12, Dec. 2017

想定される用途

- 4K、8Kクラスの高フレームレートが必要なイメージセンサ
- 1画素から複数の出力を同時にAD変換出力したい、4K、8Kクラスの水平ライン数を持つ、高フレームレートが必要なイメージセンサ
- 4K未満で、500fps~1000fpsのようにさらに高 フレームレートが必要なイメージセンサ

企業様への期待

CMOSイメージセンサを開発中の企業様で、
高精細且つ高速のイメージセンシング分野への展開をお考えの企業様には、本技術の導入が有効と思われます。

本技術に関する知的財産権

- ・発明の名称
- 特許番号
- 出願人
- 発明者

- :A/D変換器
- :第6703252号
- :静岡大学
- :川人祥二、袴田正志

産学連携の経歴

川人教授

- ・1999年-現在 年3社以上の企業と共同研究実施
- ・2002-2011年 文部科学省知的クラスター創成事業
- ・2006年-現在 大学発ベンチャー、ブルックマンテクノロジ社設立
- ・2009年-2011年 A-STEP実用化挑戦タイプ
- ・2014年-2016年 A-STEPシーズ育成タイプ
- ・2011年-2016年 産学共創基礎基盤研究プログラム
- ・2016年-2020年 文部科学省地域イノベーション・エコシステム 形成プログラム
- 2013年-2021年 COIプログラム 光創起COI-S研究拠点 リサーチリーダー
- ・2014年-2020年 NHK放送技術研究所と共同研究実施

お問い合わせ先

静岡大学 イノベーション社会連携推進機構

TEL 053-478 - 1718 FAX 053-478 - 1711 e-mail sangakucd@cjr.shizuoka.ac.jp

17