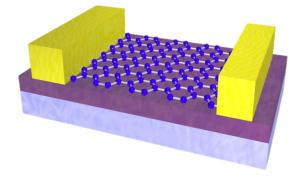
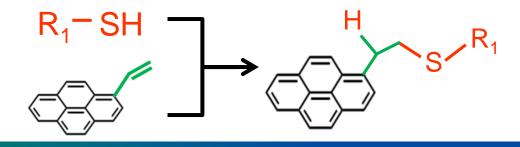
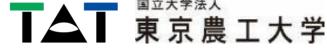


ppbの有機分子を検出可能にする 小型高感度センサ

大学院工学研究院 先端物理工学部門


助教生田昂

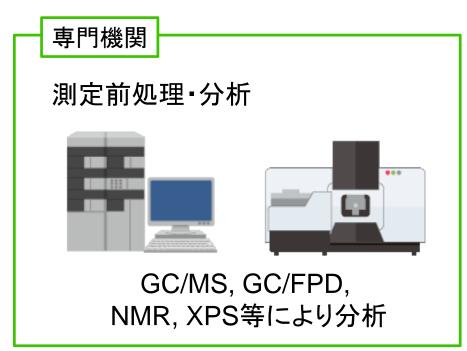

特定の官能基を有した有機分子をppb領域の微量濃度で検出可能なセンサ


- 従来の小型デバイスでは 困難であったppb領域での 有機分子検出が可能
- 分子中の特定の官能基に 対して選択性を付与する ことが可能
- 気体中での検出だけでなく 溶液中においても検出可能

1 ppb = 0.0000001 % グラフェンFET

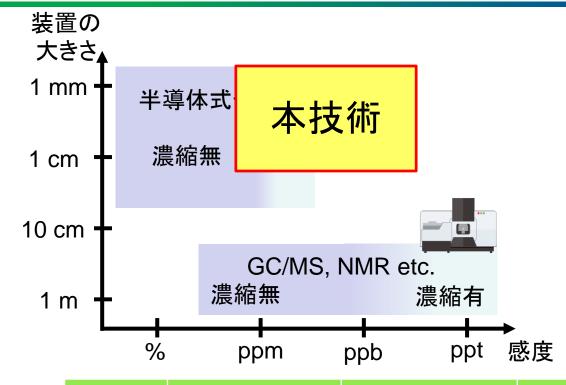
化学反応





従来の環境計測における課題

環境中の微量物質の計測手順

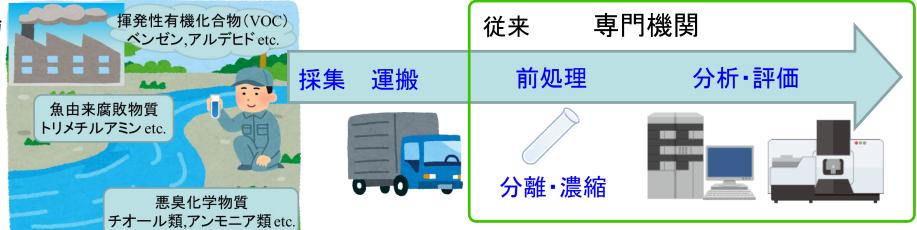


- 大型 高価な専門機器による分析
- ・濃縮や分離などの専門的な処理
 - ▶ 分析の長期化や高コスト化

従来の環境計測技術との比較

本技術の特徴

- 大きさと測定感度の トレードオフの打開が可能
- 化学反応に基づく官能基 特異的な検出が可能


	検出方法	測定下限	前処理	選択性	大きさ	測定対象
大型 装置	GC/MS	~ppb	有り	0	>1 m	分子量
	NMR	ppm~%	有り	0	~1 m	官能基
小型 検出器	半導体センサ	~ppm	無し	Δ	~1 mm	還元性ガス
	本技術	ppb	無し	0	~1 mm	官能基

本技術の目標

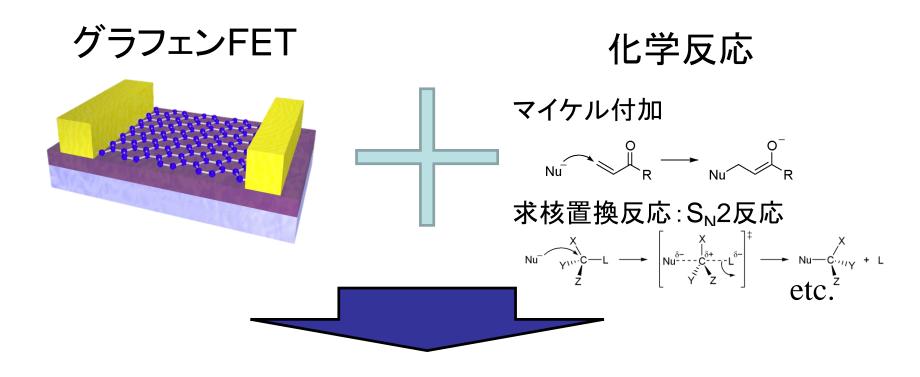
現場

本技術

現場にて 採集・分析・評価

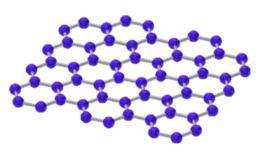
- オンサイト測定可能・ 専門知識によらず計測可能
- 小型で低消費電力 高感度計測
 - 企業・家庭等への普及
- ・ 離島・災害現場・国外に おける迅速な環境計測

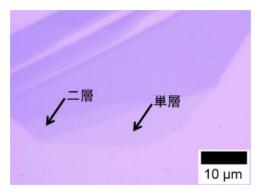
有害物質のポータブルセンサの開発に繋がる



基幹技術体系

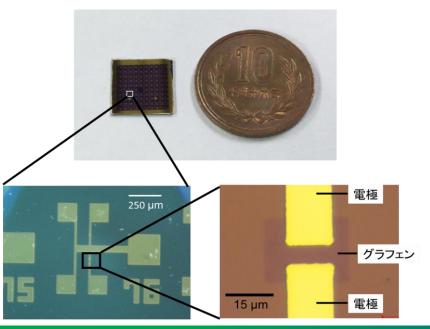
化学反応の電気的変化をグラフェンFETで取り出すセンサの開発




様々な化学反応を利用した対象物質の特異的検出を 可能にするセンサ郡の構築が可能となる技術

グラフェンについて

炭素原子からなるハニカム構造を有した二次元物質(2010年ノーベル賞)

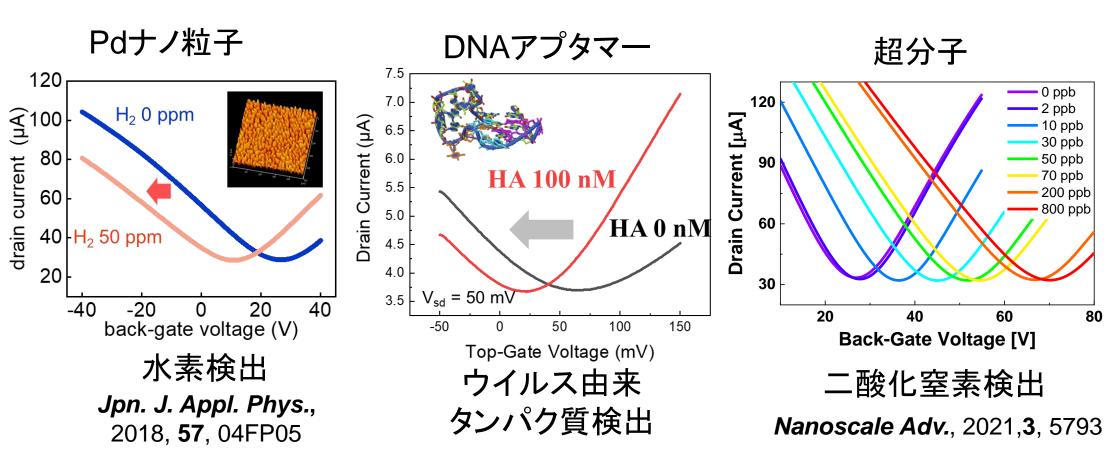


特徴

- •表面状態に敏感
 - →低濃度検出に対する利点
- •化学的に安定
 - →化学反応による検出を妨げない

電子デバイス化

グラフェンFETの特徴


- •表面状態変化を電流変化で検出
- 半導体微細化技術により集積化可能
- ・高感度リアルタイム検出が可能

グラフェンセンサの現状

グラフェン上へ機能性材料を修飾し様々センサが実現

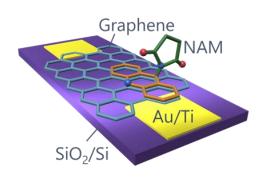
有機分子中の官能基検出可能なデバイスは未実現

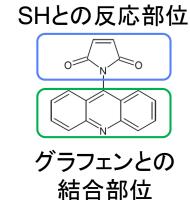
官能基選択な化学反応

官能基:分子の物性や反応性を特徴付ける部位

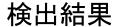
→官能基に対して特異的に起こる化学反応に注目

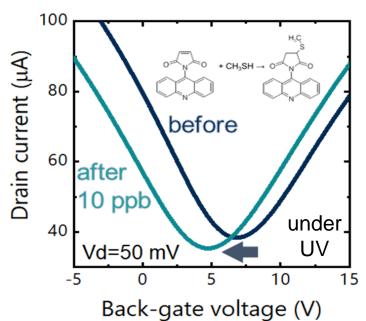
官能基	代表的な分子	症例等	反応例	
ヒドロキシル基 -OH	エタノール フェノール	アルコール中毒 有害物質	エステル化反応	
ニトロ基 -NO ₂	ニトロトルエン	爆薬	ニトロアルドール反応	
チオール基 –SH	メタンチオール	悪臭•腐敗臭	チオール-エン反応	
アミン基 R ₁ -N-R ₂ R ₃	トリメチルアミン	悪臭•腐敗臭	S _N 2反応	


グラフェン上で化学反応を利用することにより官能基検出を行う

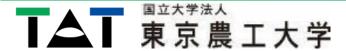


本技術を用いたメタンチオール検出




反応性分子 N-(9-アクリジニル)マレイミド ターゲット分子 メタンチオール

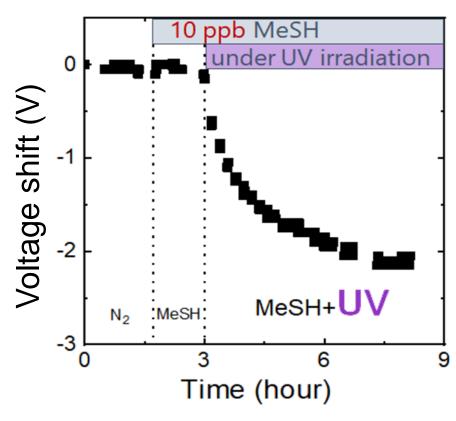
+ HS-CH₃ \longrightarrow



反応性分子とグラフェンFETを利用し 10 ppbのメタンチオールの検出が可能

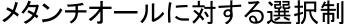
*半導体式センサと比較し 3桁以上低濃度で検出

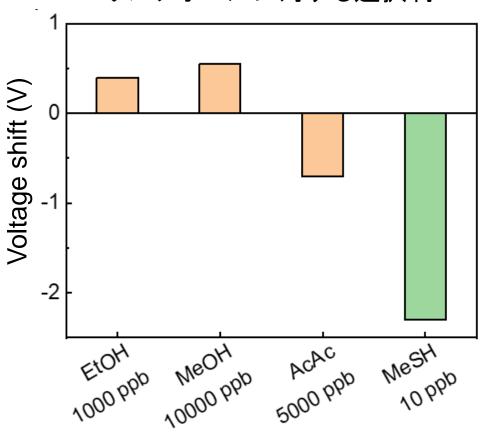
ACS Appl. Mater. Interfaces 2021, 13, 37, 45001



Tokyo University of Agriculture and Technology

本技術を用いたメタンチオール検出

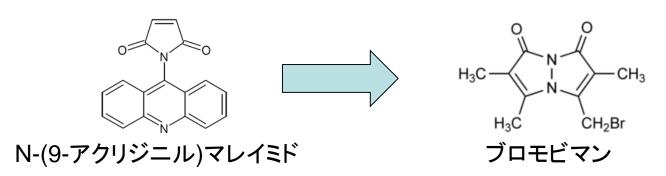



メタンチオールに対する応答性

UV照射により電圧のシフトが発生

*UVにより検出タイミングを コントロール可能

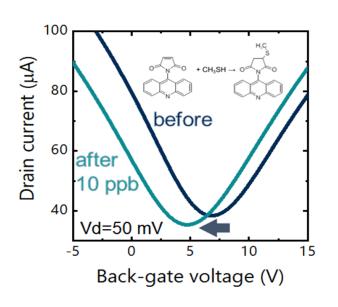
メタンチオールに対して 高い選択性を実現


ACS Appl. Mater. Interfaces 2021, 13, 37, 45001



本技術を用いたメタンチオール検出

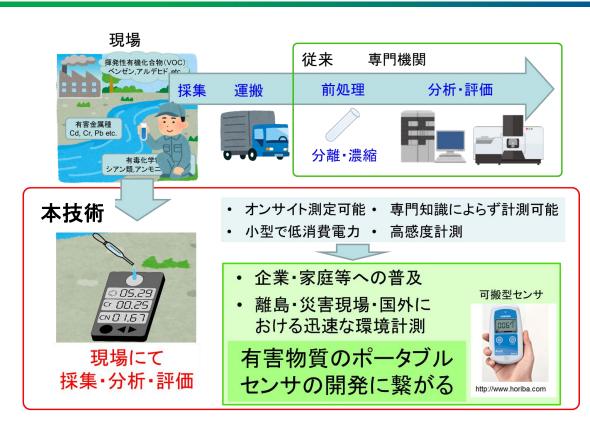
異なる反応性分子を利用


反応性分子を変更した場合でも メタンチオールに対して応答

グラフェン上で様々な 分子群の利用が可能


本技術のまとめ

・従来の小型デバイスでは 困難であったppb領域での 有機分子検出が可能



分子中の特定の官能基に 対して選択的に検出可能

本技術がひらく高感度環境計測

- 専門機関における高価·高度な 分析装置が不要
- 専門家によらない環境計測の実現
- 有害物質の迅速な検出
- ・ センサ普及による有害物質の 監視網の構築

従来技術では困難であったきめ細かな 有害物質モニタリングの実現へ

SDGsの目標実現に対しても高い貢献度になると期待

実用化に向けた課題

- 大気下や夾雑環境下での実証試験は未実施
 - 窒素下での対象物質の検出は実証済み
- 大気下での検出可能性について実験・データの取得
 - 実環境に近い系での実験を通じて分子の最適化
- デバイスの作製精度の向上
 - デバイス特性のバラつきを抑制できる技術の確立・最適化
- デバイスの再利用性の検証
 - 反応後の反応性分子の剥離溶媒の最適化

企業への期待

- ●希望している共同研究先
 - 機能性分子の合成技術や、 電子デバイスの実装技術を持つ企業様
 - グラフェンの応用展開を考えている企業様
- ●本技術の導入が有効と思われる協業先
 - 微量分析分野への展開を考えている企業様

本技術に関する知的財産権

・発明の名称:官能基含有有機分子検出センサ、検出方法、有機分子検出アレイ及び有機分子スクリーニング方法

· 出願番号 : 特願2019-112141

· 公開番号 : 特開2020-204522

· 出願人 : 国立大学法人東京農工大学

· 発明者 :生田 昂、前橋 兼三、

坂本 優莉

お問い合わせ先

東京農工大学

先端産学連携研究推進センター

T E L 042 - 388 - 7550

FAX 042 - 388 - 7553

e-mail suishin@ml.tuat.ac.jp

