

電流のみで駆動するナノワイヤ製造装置

名古屋大学 大学院工学研究科マイクロ・ナノ機械理工学専攻 助教 木村康裕

本日のアウトライン

本技術は "優れた諸特性を有するナノワイヤを, 自在に作ることを可能にする

電流駆動のところてん式ナノワイヤ製造装置/技術"

- ナノワイヤ(ウィスカ)とは?
- 2. 従来課題とその問題点
- 3. 新技術の概要
- 4. 新技術の特徴・従来技術との比較

背景 ナノワイヤ(ウィスカ)とは?

極小なスケールに由来する優れた諸特性を有する微細な材料

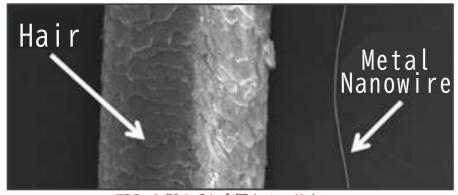


FIG. 1 髪の毛と金属ナノワイヤ1

FIG. 2 金属ナノワイヤ成長の様子1

Cat-whisker

特徴

- ☑ 高アスペクト比
- ☑ 高比表面積
- ☑ 特異な導電性・熱伝導性
- ☑ 高弾性・高強度

Snナノワイヤ: 2~3%弾性ひずみ2

Alナノワイヤ: バルクの20倍の降伏応力3

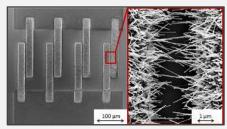
強度低下となる結晶欠陥が少ない

- 1. NASA, https://nepp.nasa.gov/whisker/
- C. Herring and J. Galt, *Phys. Rev.*, Vol. 85 (1952) 1060. H. Tohmyoh, et al., *J. Phys. Soc. Jpn.*, Vol. 81 (2012) 094803.

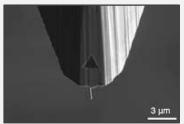
ナノワイヤの材料特性

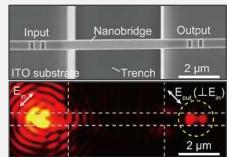
極小なスケールに由来する優れた諸特性を有する微細な材料

TABLE 1 金属ナノワイヤと他材料における材料特性の比較


	金属			非金属		
材料	Al ナノワイヤ	Cu ナノワイヤ	ハイテン	Carbon fiber	Single-walled Carbon Nanotube	くも糸
径	マイクロ ≃1.0 μm ナノ ≃数十 nm	マイクロ ≃1.2 μm ナノ ≃5.8 nm	バルク材	マイクロ ≃7.3 μm	ナノ 0.6-0.8 nm	N/A
結晶 構造	単結晶	単結晶	多結晶	N/A	N/A	N/A
力学 物性	降伏応力 0.425 GPa ⁴ 2.0 GPa ⁹	引張強さ 0.80~3.00 GPa ^{5,6} 5.8 GPa ⁵	引張強さ ≥0.49 GPa ¹⁰	引張強さ 3.8 GPa ⁷	引張強さ 50-500 GPa ⁷	引張強さ 0.180 GPa
特徴	加工性良好(耐熱性・展延性・焼結性) ⁸ 体積強度比・リサイクル性・補修性			高強度・軽量・ノウハウ豊富		

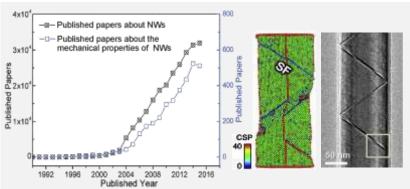
H. Tohmyoh, et al., *J. Phys. Soc. Jpn.*, Vol. 81 (2018) 276.
 Y. Yue, et al., Nano Lett., Vol. 11 (2011) 3151.
 Brenner, J. Appl. Phys., Vol. 27 (1956) 1484.
 M.H. Al-Saleh and U. Sundararaj, Composites, Part A, Vol. 42 (2011) 2126.


^{8.} *日経ものづくり*, 3月号 (2017) 34. 9. S. Kim, et al., *Acta Materialia*, Vol. 160 (2018) 14. 10. *こぺるにくす*, Vol. 6 (1997) 1.


素材としてのナノワイヤの重要性

ガスセンサ11 高比表面積による高感度

原子間力顕微鏡プローブ12 極小さに由来する高分解能


光導波路13 ナノに由来する光特性

透明導電性シート14 寸法効果を打破する高導電性

FIG. 3 ナノワイヤの応用事例

産業的価値 特異な性質を利用したデバイス 学術的価値 力学特性を理解する理想的試料

(左)ナノワイヤおよびその機械特性に関する論文の推移15 FIG. 4 (右)ナノワイヤ引張試験による積層欠陥生成の様子16

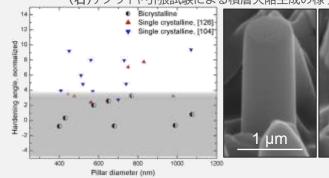
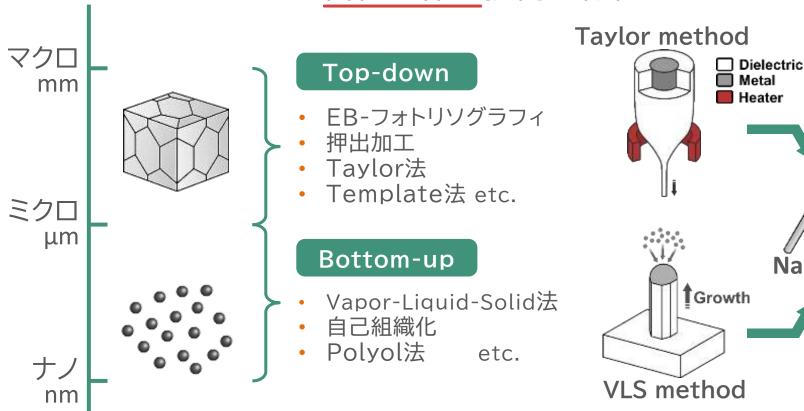


FIG. 5 (左)ピラーの寸法依存性17 (右) ピラー圧縮試験前後の様子18

機能材料としての応用に限定

- 11. S. Steinhauer, et al., Sens. Actuators, B, Vol. 186 (2013) 550.
- 12. M. Motoyama and F. Prinz, ACS Nano, Vol. 8 (2014) 3556.
- 13. Y. Nagasaki, et al., MRS Commun., Vol. 5 (2015) 587.
- 14. M. Kawamori, et al., Nano Lett., Vol. 14 (2014) 1932.

特定の形状/結晶性を有した材料特性の理解


- 15. S. Wang, et al., *Adv. Sci.*, Vol. 4 (2017) 1600332.
- 16. S.-H. Kim, et al., Acta Mater., Vol. 160 (2018) 14.
- 17. S.-H. Kim, et al., Acta Mater., Vol. 196 (2020) 69.
- 18. A. Kunz, et al., *Acta Mater.*, Vol. 59 (2011) 4416.

Nanowires

従来技術とその問題点

ナノワイヤを自在に作る技術が存在しない

新たなワイヤ製造技術開発の必要性

従来技術とその問題点

ナノワイヤを自在に作る技術が存在しない

個別の要素を満足する技術は存在するが、網羅的な技術は存在しない 《ex. 高強度材料への適用には、極細・超長・単結晶化の全てが必須》

粒径/方位/転位密度/双晶など

直径

長さ

断面形状

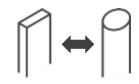
結晶性

FIB* fabrication *Focused Ion Beam

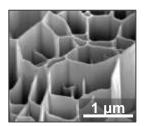
Taylor method²⁰

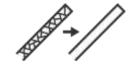
VLS* growth *Vapor-Liquid-Solid

Polyol method

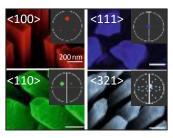


《物理的》

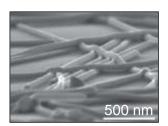



《物理的》

180-nm-dimater

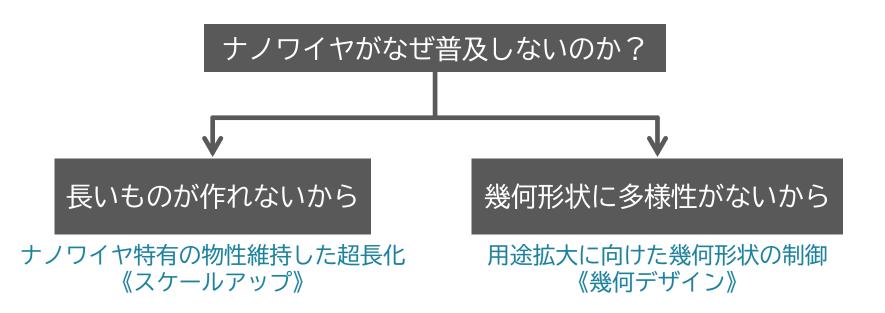


《化学的》



《物理的》

《化学的》



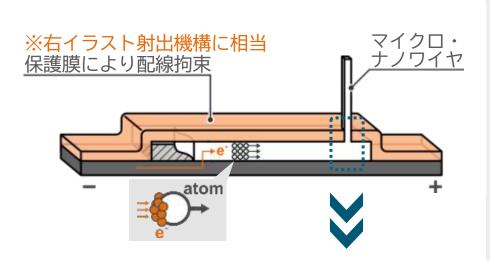
- 15. S. Wang, et al., *Adv. Sci.*, Vol. 4 (2017) 1600332.
- 19. S. Shahbeyk, et al., Cryst., Vol. 9 (2019) 1.
- 20. M. Yaman, et al., *Nat. Mater.*, Vol. 10 (2011) 494.
- 21. M. Brewster, et al., J. Phys. Chem. Lett., Vol. 2 (2011) 1940.
- 22. Y. Tao and C. Degen, Nat. Commun., Vol. 9 (2018) 1.
- 23. E. Garnett, et al., Nat. Mater., Vol. 11 (2012) 241.

従来技術とその問題点

もう少し要点を絞ると

独自技術

エレクトロマイグレーションによるナノワイヤ創製法により実現 (電流のみで駆動するナノワイヤ製造装置)


ナノワイヤの優れた特性を活かした高強度機械材料/機能材料としての普及

新技術の概要

ところてん式ナノワイヤ創製法 電流によるミクロスケール押出加工

加熱しながら電流を流し圧力差(静水圧応力差)を利用して射出

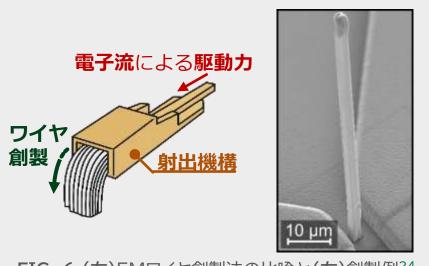
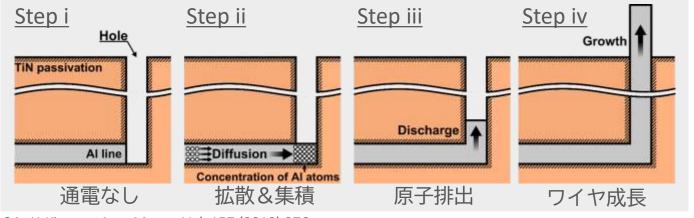
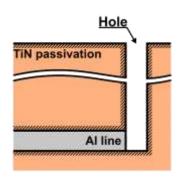
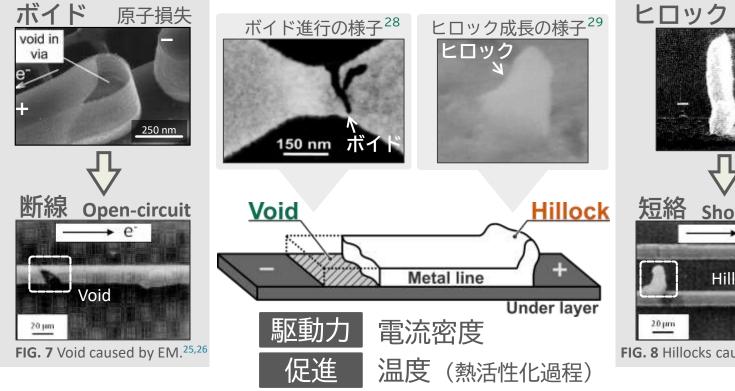




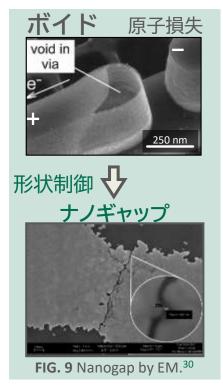
FIG. 6 (左)EMワイヤ創製法の比喩と(右)創製例24



24 Y. Kimura, Acta Mater., Vol. 157 (2018) 276.

動作原理 エレクトロマイグレーションとは?

高密度電子流を駆動力とした金属原子の拡散現象


原子集積 **Short-circuit** Hillock FIG. 8 Hillocks caused by EM.^{26,27}

- 25. A.H. Fischer, A. Abel, M. Lepper, et al., Microelectron. Reliab., Vol. 41 (2001) 445.
- 26. Website: http://www.csl.mete.metu.edu.tr/Electromigration/emig.htm
- 27. I.A. Blech, J. Appl. Phys., Vol. 47 (1976) pp. 1203–1208. 28. Website: https://www.dailymotion.com/video/x2kdzc6 "Electromigration réussie."
- 29. Website: https://www.youtube.com/ "Electromigration: Hillock growth in conductor lines."

動作原理 エレクトロマイグレーションの活用例

害悪因子を応用したマイクロ・ナノワイヤ創製

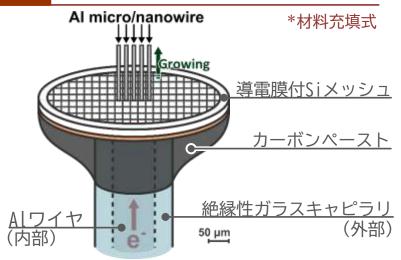
マイクロ・ナノワイヤ創製のための創製技術に応用

- 28. Website: https://www.dailymotion.com/video/x2kdzc6 "Electromigration réussie." 29. Website: https://www.youtube.com/ "Electromigration: Hillock growth in conductor lines."
- 30. P. Motto, et al., Nanoscale Res. Lett., Vol. 7 (2012) 113.
- 31. Y. Kimura, Acta Mater., Vol. 157 (2018) 276.

新技術の概要

「強くて軽い」新素材つくれます

多用な材料づくりの基礎技術


方法1 チップ型サンプル構造³¹

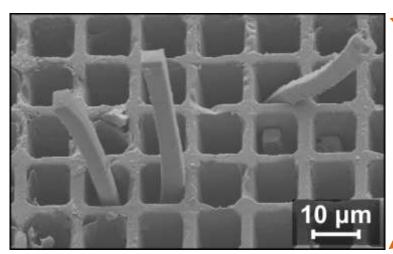
Al micro-wire 絶縁膜付Siウェハ Growing

- ☑ nm~µm径の創製
- ☑ nm~サブmm長の創製
- ☑ 単結晶・多結晶
- ☑ 自由断面形状

方法2

ファインインジェクション32

- ▼ µm~mm径の創製
- ☑ µm~mm長の創製
- ☑ (単結晶)・多結晶・アモルファス
- ☑ 自由断面形状
- ☑ 手のひらサイズ(省電力)


31. Y. Kimura, Acta Mater., Vol. 157 (2018) 276.

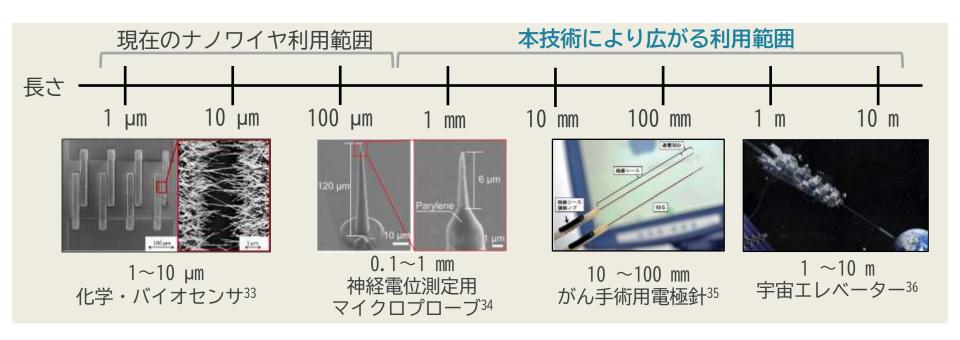
新技術の概要

新技術によるワイヤの創製例

方法2 ファインインジェクション

FIG. 11 Al microwires fabricated by Fine-injection.

エレクトロマイグレーションによる新機構 「ファインインジェクション」によってAlマイクロワイヤの創製に成功


新技術の特徴・従来技術との比較

エADIEつ新小田立と大田立のレお

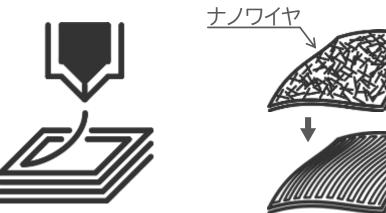
TABLE 2 類似研究と本研究の比較							
	類似	本技術					
	Vapor Liquid Solid法 (VLS) IGrowth	ガラス被覆溶融紡糸法 (Taylor法) Dielectric Metal Heater	電流のみで駆動する ナノワイヤ製造装置				
直径制御性	× ~数百ナノ径 ※触媒径に依存		○ ナノ〜マイクロ径 ※射出孔径に依存				
長さ制御性	△ ~数十μm長	〇 ~数メートル長	○ ~数メートル長 ※理論上				
断面制御性	△ 真円/矩形断面	🗙 真円断面	○ 円/矩形/チューブ ※理論上				
材料選択性 FCC _{面心立方} BCC _{年心立方} 合金 磁性材料	🗙 半導体	× 低融点材料	○ 全導電性材料 合金も可能				

① 長さ/直径/元素制御による素材としての利用

《従来用途の代替》

- 電子配線(Al, Cu, Co, Ru)
- 電子顕微鏡フィラメント(Wなど)
- 電子部品用ボンディングワイヤ(軽金属)
- 複合材料としての包埋
- 自動車用ワイヤハーネス(Cu)
- 高導電性オーディオケーブル(Cu) etc.

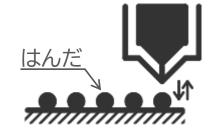
33. S. Steinhauer, et al., Sens. Actuators, B., Vol. 186 (2013) 550.


- 34. Y. Kubota, et al., Sens. Actuators, B., Vol. 258 (2018) 1287.
- 35. 森安史典他, 膵臓, Vol. 30 (2015) 210.
- 36. タワー No. 53, 季刊大林 (2017): https://www.obayashi.co.jp/kikan obayashi/detail/kikan 53 idea.html

② 長さ/直径/元素制御による技術としての利用

《Drawing技術への展開》

- 3Dプリンティング(Additive Manufacturing)としての活用
- 透明導電膜(導電性シート)におけるワイヤ作製/アセンブリ技術の統合
- はんだバンピング技術への応用 etc.

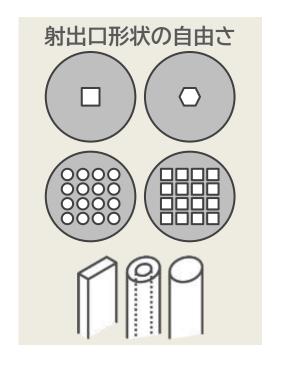


3Dプリンティング (Additive Manufacturing:AM)

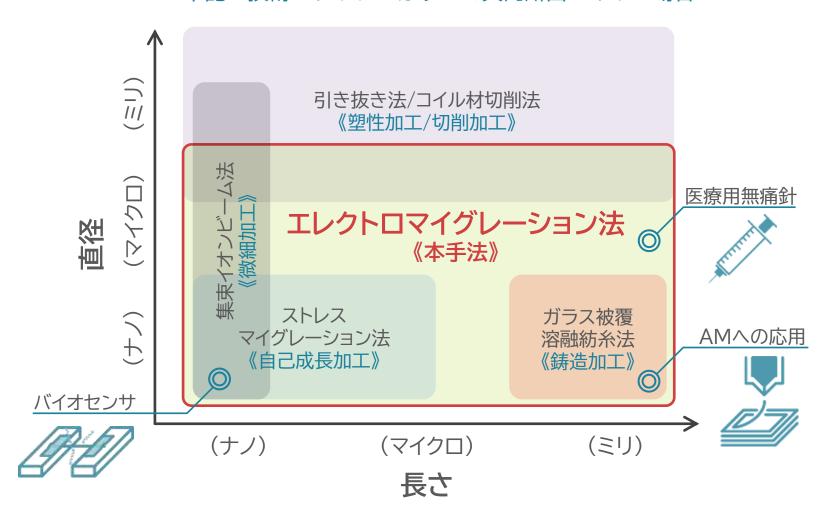
*極細ボンディングワイヤとしても

透明導電膜 (導電性シート)

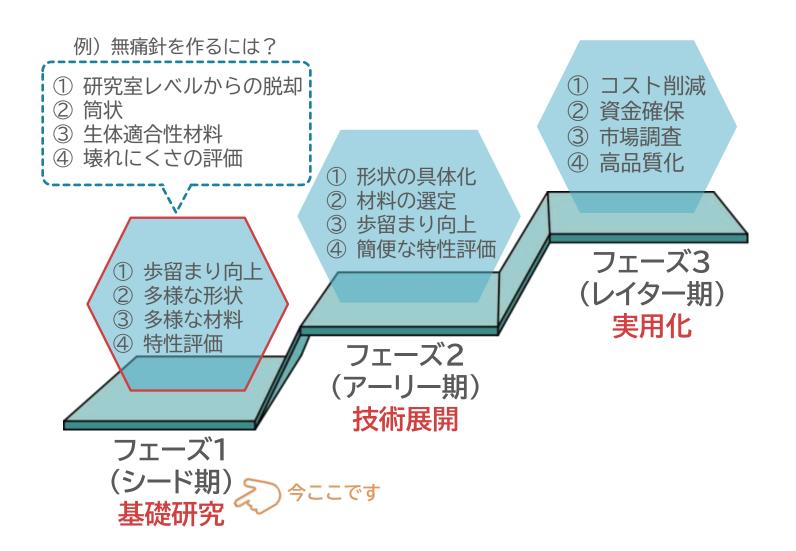
はんだバンピング (金属ディスペンサー)


③ 自由な断面形状による新用途

断面形状は射出口制御により自由に変化可能



ナノプローブ


金属ナノワイヤの技術&用途マトリクス*下記の技術マトリクスはすべて真円断面ワイヤの場合

実用化に向けた課題

社会Needsに合った課題設定と技術開発

企業への期待

実用化に向けた課題を共にチャレンジ

- 将来を見据えたアーリーステップからの共同研究を希望
- 求めるドメイン&ニーズに対して, 本技術による社会的課題の打破&本技術の更なる高度化

本技術に関する知的財産権

発明の名称: ナノワイヤ製造装置およびナノワイヤ製造方法

· 出願番号 : 特願2020-147169

· 出願人 : 国立大学法人東海国立大学機構

· 発明者 : 木村 康裕, 巨 陽

お問い合わせ先

国立大学法人東海国立大学機構 名古屋大学学術研究·產学官連携推進本部

TEL :052-788-6150 FAX :052-747-6796

Email: miraig@aip.nagoya-u.ac.jp