

# ナノアーチ構造シリコンアノードを持った リチウムイオン電池

Silicon Anodes with a Nano-Vault Structure for Lithium-Ion Batteries

沖縄科学技術大学院大学 ディーンズ・リサーチグループ Dean's Research Group

スタッフサイエンティスト

**Staff Scientist** 

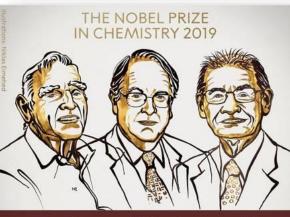
パナジオティス・グラマティコプロス

Panagiotis Grammatikopoulos



## リチウムイオン電池と日本の関わり

### 新技術説明会 New Technology Presentation Meetings


### **Li-Ion Batteries: a Very Japanese Affair**

#### Commercialization and advances [edit]

The performance and capacity of lithium-ion batteries increased as development p

- 1991 Sony and Asahi Kasei released the first commercial lithium-ion battery
- 1996 Goodenough, Akshaya Padhi and coworkers proposed lithium iron pho </nowiki> Journal of the Electrochemical Society, 144 (4), p. 1188-1194</ref>
- 1998 C. S. Johnson, J. T. Vaughey, M. M. Thackeray, T. E. Bofinger, and S. J.
- 2001 Arumugam Manthiram and co-workers discovered that the capacity limthe top of the oxygen 2p band. [64][65][66] This discovery has had significant imp
- 2001 Christopher Johnson, Michael Thackeray, Khalil Amine, and Jaekook K
- 2001 Zhonghua Lu and Jeff Dahn file a patent<sup>[69]</sup> for the NMC class of positive
- 2002 Yet-Ming Chiang and his group at MIT showed a substantial improvem mechanism causing the increase became the subject of widespread debate.
- 2004 Yet-Ming Chiang again increased performance by utilizing lithium iron surface area and improved capacity and performance. Commercialization led
- . 2005 Y Song, PY Zavalij, and M. Stanley Whittingham report a new two-elec
- 2011 Lithium nickel manganese cobalt oxide (NMC) cathodes, developed at Argonne National Laboratory, are manufactured commercially by BASF in Ohio. [74]
- 2011 Lithium-ion batteries accounted for 66% of all portable secondary (i.e., rechargeable) battery sales in Japan.
- 2012 John Goodenough, Rachid Yazami and Akira Yoshino received the 2012 IEEE Medal for Environmental and Safety Technologies for developing the lithium ion battery.
- 2014 John Goodenough, Yoshio Nishi, Rachid Yazami and Akira Yoshino were awarded the Charles Stark Draper Prize of the National Academy of Engineering for their pioneering efforts in the field [76]
- 2014 Commercial batteries from Amprius Corp. reached 650 Wh/L (a 20% increase), using a silicon anode and were delivered to customers.
- 2016 Koichi Mizushima and Akira Yoshino received the NIMS Award from the National Institute for Materials Science, for Mizushima's discovery of the LiCoO<sub>2</sub> cathode material for the lithium-ion battery and Yoshino's development of the lithium-ion battery.
- 2016 Z. Qi, and Gary Koenig reported a scalable method to produce sub-micrometer sized LiCoO<sub>2</sub> using a template-based approach.<sup>[78]</sup>
- 2019 The Nobel Prize in Chemistry was given to John Goodenough, Stanley Whittingham and Akira Yoshino "for the development of lithium for patternes", 192

In 2010, global lithium-ion battery production capacity was 20 gigawatt-hours. [79] By 2016, it was 28 GWh, with 16.4 GWh in China. [7] Production is complicated and requires many steps.



John B. M. Stanley Akira Goodenough Whittingham Yoshino

"for the development of lithium-ion batteries"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

WIKIPEDIA
The Free Encyclopedia

was led by Yoshio Nishi.[13]

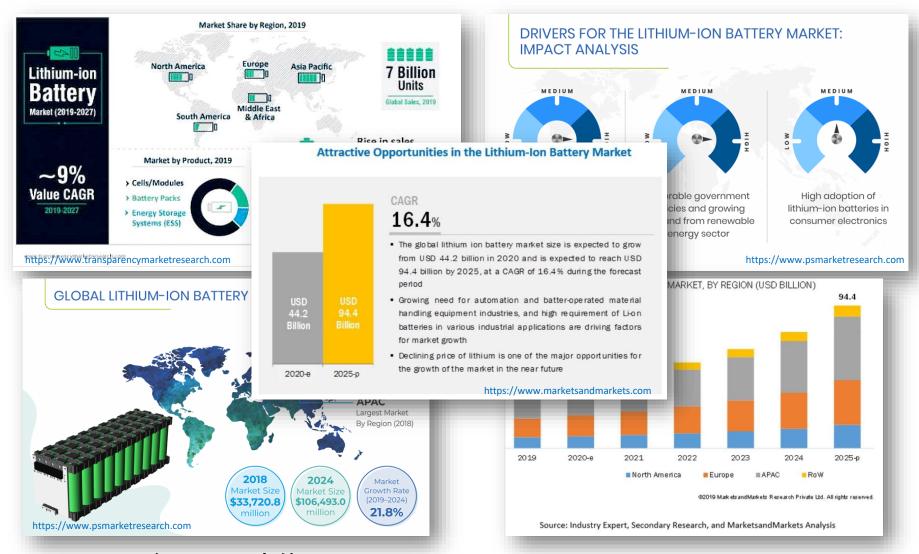
with the same structure as mineral olivine) as positive electrode materials.[62]

ich NMC cathode materials.[63]

in be understood based on the relative positions of the metal 3d band relative to pattery layered oxide cathodes, as well as their stability from a safety perspective.

ents over the widely used lithium cobalt oxide.

luctivity by doping it<sup>[70]</sup> with aluminium, niobium and zirconium. The exact

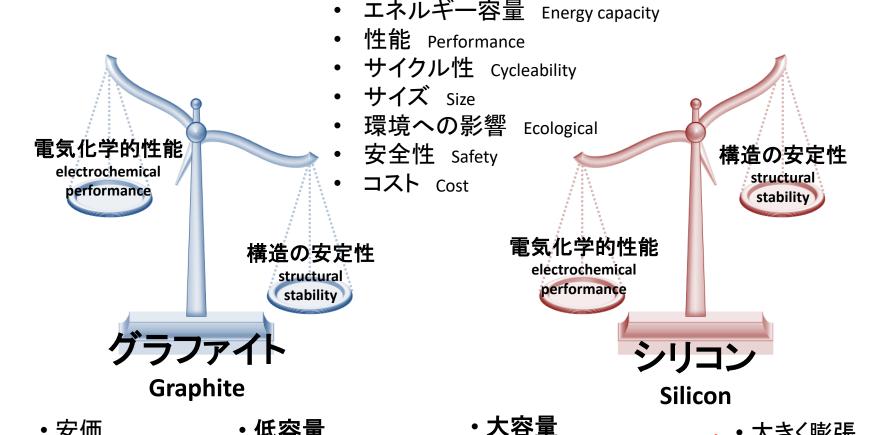

sed particle density almost one hundredfold, increased the positive electrode's well as a patent infringement battle between Chiang and John Goodenough.<sup>[71]</sup>



## リチウムイオン電池市場

### 新技術説明会 New Technology Presentation Meetings!

### **Economics of Li-Ion Batteries**




- アノードのコスト: 全体の10-15% Anode worth 10-15% of total cost
- アノード市場: 2025年には100億ドル(1兆円)規模に Anode market worth ~\$10 billion by 2025

## アノード材料の採用基準

### 新技術説明会 New Technology Presentation Meetings!

### **Criteria for Anode Material Selection**



- 安価 cheap
- 拡張可能 scalable
- ロバスト性 robust

- 低容量 low capacity
- 重い heavy

- 軽量 lightweight
- インテグレーション可能 integrateable

very high capacity

• 材料が安価

cheap material

- 大きく膨張 huge swelling
- ・SEIが安定しない unstable SEI
- **亀裂発生** fracture



## アノード材料の採用基準



**Criteria for Anode Material Selection** 



## テスラ Battery Day 2020年9月22日

Tesla Battery Day, September 22, 2020



## シリコンアノードの安定化させる方法



### **Strategies to Stabilise Si Anodes**

- ・リチウム化による膨張を制限 Restrict lithiation swelling
  - シリコン混合アノード Silicon-composite anodes
  - 土台でのカプセル化 Encapsulation in matrices
  - 非活性物質の添加 Addition of inactive material



 安定するがシリコンの割合は低下 increased stability but reduced Si content



- ・リチウム化による膨張を収容 Accommodate lithiation swelling
  - 構造(例:薄膜、ナノ粒子、ナノチューブ、ナノワイヤ等)

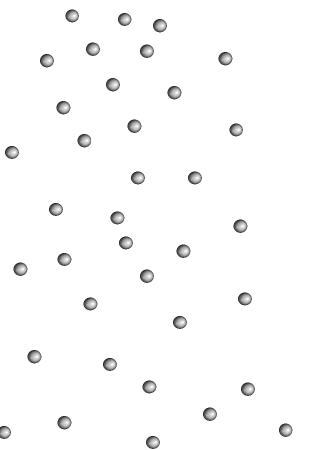
Structuring (e.g., thin films, nanoparticles, nanotubes, nanowires, etc.)



- 安定性が向上することも sometimes increased stability
- 製造過程が複雑 extra fabrication complexity

例: Amprius社(シリコンナノワイヤ) Ramot社(ステンレス鋼上のシリコンナノワイヤ)

e.g., Amprius (Si nanowires), Ramot (Si nanowires on stainless steel)


OISTアノード:成長工程

**OIST Anode: Growth** 





ステップ1 step 1: タンタルナノ粒子の蒸着 Ta NP deposition

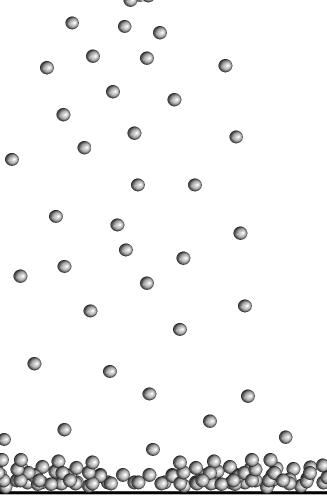


適した基材/集電体 appropriate substrate / collector



OISTアノード:成長工程

ナノ粒子の足組 🔾


NP scaffold

**OIST Anode: Growth** 

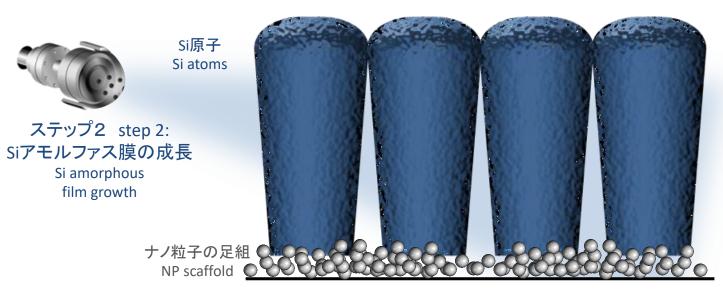




ステップ1 step 1: タンタルナノ粒子の蒸着 Ta NP deposition



適した基材/集電体 appropriate substrate / collector




## OISTアノード:成長工程

**OIST Anode: Growth** 







適した基材/集電体 appropriate substrate / collector



# 利点

**Advantages** 

フレキシブル、制御可能、 スケールアップ可能な デザイン

> flexible, controllable, scalable design

## 重ねられる

possibility to stack vertically

剛性の増加

increased stiffness

アモルファスシリコン柱

amorphous Si pillars

インテグレーション可能、 環境負荷の少ない製造方法 (バインダー、溶液不要)

> integratable, eco-friendly fabrication (no binders/solvents)

improved adhesion

相互拡散なし

Si amount

引された表面-安定したSEI

ealed surface - stable S

|向上した雷気接点

enhanced electrical contact

もっと重ねられる

and beyond...

水道橋の ような多層構造 aqueduct structure

広い表面積

high surface area

>99.5 at.% Si

異方性膨張のための

スペース

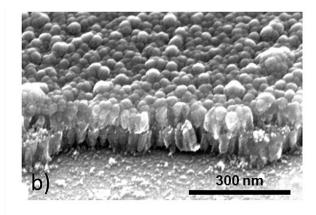
space for anisotropic swelling

密着性の向上

速いリチウム化

fast lithiation paths

no interdiffusion

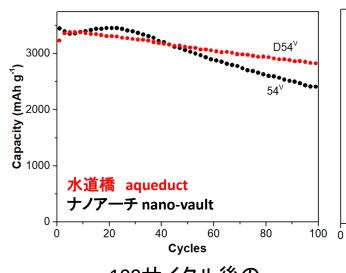

vaulted structure

## OISTアノード:特徴

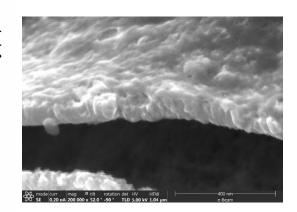
### 新技術説明会 New Technology Presentation Meetings!

**OIST Anode: Features** 






大型の分子動力シミュレーションで証明


proven by large-scale Molecular Dynamics simulation

弾性係数の向上 elastic modulus enhancement

SEM: 水道橋のような多層構造 SEM: aqueduct structure



D54<sup>V</sup>
・・・
54<sup>V</sup>
・・・
54<sup>V</sup>
・・
754<sup>V</sup>
・・
754<sup>V</sup>
・・
85
O
Regional Cycles
A 20 + A 2 + A 2 + A 3 + A 4 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A 5 + A



100サイクル後の エネルギー容量保持

energy capacity retention after 100 cycles

100サイクル後に ~ 100%のクローン効率 ~100% Coulombic efficiency

after 100 cycles

SEM: サイクル後の構造の安定性 SEM: mechanical stability

after cycling

## 従来技術とナノアーチ構造の比較



## Comparison of nano-vault architecture with existing technology

Zuo et al. *Nano Energy* 31 **(2017)** 113-143

| 2016                           | Anode                                            | Synthesis method                                       | Cycling stability サイクル安定性                          |                              |                                                |
|--------------------------------|--------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|------------------------------|------------------------------------------------|
|                                | アノード                                             | 合成方法                                                   | Discharge capacity<br>[mA h g <sup>-1</sup> ] 放電能力 | After nth<br>cycle<br>Nサイクル後 | Current rate<br>[mA g <sup>-1</sup> ]<br>電流レート |
| 0D Si NPs                      | Si NPs/graphene composite                        | Top-down dispersion and bottom-up synthesis            | >1200                                              | 600                          | 500                                            |
| 0D Si NPs                      | Si NPs/rGO-hybrid                                | Sol-gel reaction followed by magnesiothermic reduction | 1165                                               | 100                          | 2100                                           |
| 0D Si NPs                      | SNPs@void@ mGra                                  | Melting self-assembly route                            | 1287                                               | 500                          | 500                                            |
| 0D Si NPs                      | Si@C-rGO                                         | Stirring and vacuum filtration                         | 930                                                | 400                          | 300                                            |
| 0D Si NPs                      | Si NPs/graphene foam                             | Freeze-drying method                                   | 1295                                               | 180                          | 500                                            |
| 0D Si NPs                      | Si-nanolayer-embedded<br>graphite/carbon hybrids | CVD                                                    | 496                                                | 100                          | 0.5C                                           |
| Si microparticles (1–<br>3 μm) | Graphene cages/um silicon                        | Using a dual-purpose Ni template                       | 2805                                               | 300                          | 210                                            |
| 3D Si                          | Granadilla-like silicon/carbon composite         | Templating method                                      | 1100                                               | 200                          | 250                                            |

OISTアノードアモルファスSi水道橋(多層構造)CBD-PVD コンビネーションOIST anodea-Si aqueductCBD-PVD combination

CBD - クラスタビーム蒸着 cluster beam deposition

PVD - 物理蒸着 physical vapour deposition

ARTICLE

WIND JAMES TO STATE AND THE STATE OF THE STATE O

最適化前でも既に高性能を示す! NOTICE: OIST anode not fully optimised yet!

Commun Mater 2 (2021) 16

Adv Science 4 (2017) 1700180

2832

0.5C

100

# 想定される用途



**Expected application** 

・ エネルギー密度が重要な電子機器向けの ハイエンドリチウム電池

(航空・宇宙産業など)

It can be applied for **high-end** Li-ion batteries for electronic applications, where **energy density over weight** is important (e.g., aeronautics and space).

電池以外では、高ストレスサイクルへの耐性が必要な用途にも ナノアーチ構造自体を利用可

(水素貯蔵、バイオインプラントなど)

Other than batteries, the nano-vault architecture itself can be used in applications requiring endurance over variable high-stress cycling (e.g., hydrogen storage, bioimplants, etc.).



# 実用化に向けた課題



### **Challenges for commercialisation**

- 達成していること
- (1)ナノ構造ユニットの電気化学的および機械的応答の改善
- (2) 垂直方向に積み重ねる多重構造による性能の向上

We have demonstrated (1) the **improved electrochemical and mechanical response** of the nanostructure unit (2) performance enhancement due to **vertical repetition** in multilayers.

- これから取り組むこと
- (1)構造(サイズ、材料、層数など)のさらなる最適化
- (2)製造プロセスのスケールアップ

(例:マグネトロンスパッタリングから化学蒸着法への変更)

We need to (1) further optimise the structure (e.g., dimensions, materials, number of layers)

- (2) scale up fabrication process (e.g., by replacing magnetron sputtering with other CBD method)
- このナノアーチ構造を、類似技術と比較し、性能やコスト(例: PVDかCVDか)、 環境への影響を要評価

For commercialisation, our nano-vault structure needs to be benchmarked against other, similar approaches (e.g., Amprius Si nanowire anodes) in terms of performance, cost (e.g., PVD vs. CVD), and environmental impact.

# 企業への期待



### Potential ways for technology transfer

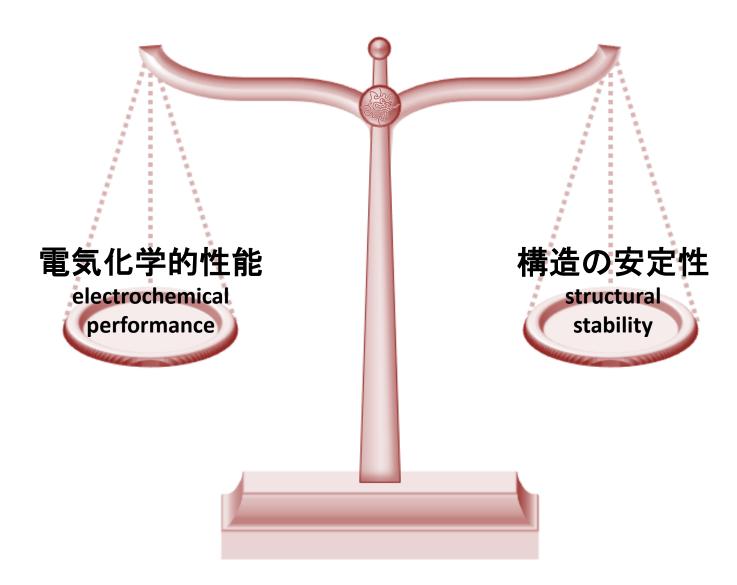
パラメータの最適化と概念実証は(POC: Proof-of-concept)は大学で行い、スケールアップは企業での実施を希望。

Parameter optimisation and proof-of-concept should be conducted in academic environment. Scale-up should be proven at industrial scale.

- マイクロバッテリーに関心を持つ企業との共同研究を希望。
  - (1)最適化の実現:ポスドク雇用の資金提供など
  - (2)スケールアップ:ライセンス契約

Looking for a company focusing on micro-batteries for research collaboration:

- (1) optimisation round (e.g., post-doc funding)
- (2) production upscale (technology licencing)
- 高密度バッテリーを開発中の企業や、ハイエンド製品市場への参入を目指す 企業(ドローンなど)は、本技術の導入が有効。


Companies which are developing **high-density batteries** or which want to enter into **high-end application market** (e.g., drones) can benefit from this technology.



## OISTのアノード:総合評価

新技術説明会 New Technology Presentation Meetings

**OIST anode: Assessment** 









発明の名称:ナノ・ヴォールト

原題「Nano-Vault」

出願番号 : 米国 仮出願 63/075,455

出願人 :沖縄科学技術大学院大学(単独)

発明者:グラマティコプロス パナジオティス Panagiotis Grammatikopoulos

マルタ・アロ Marta Haro

ジュンレイ・ザオ Junlei Zhao

エミリオ・ホセ・フアレスペレス Emilio Jose Juarez-Perez

# お問い合わせ先

新技術説明会 New Technology Presentation Meetings

**Contact** 

## 沖縄科学技術大学院大学(OIST) 技術移転セクション

TEL: 098-966-8937

FAX: 098-982-3424

E-mail: tls@oist.jp

