

高塩濃度溶液からSrを除去する 高性能マンガン酸化物系吸着剤

香川大学 創造工学 先端材料科学領域 教授 馮 旗

2021年8月17日

本技術開発の背景および用途

福島原発事故(2011年3月11日)

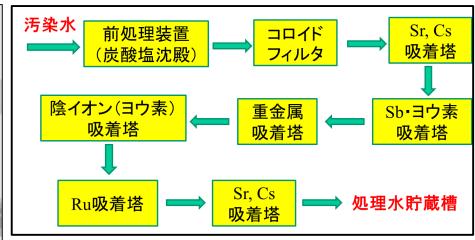
福島第一原子力発電所事故 (左から4号機、3号機、2号機、1号機)

構内に並ぶ無数の汚染水タンク (2015年11月)

- •冷却水や地下水の流入: 100 t/day汚染水(現在)
- 事故処理終了まで40年間

莫大なお金がかかるため、低コスト化が不可欠

福島第一原発電事故汚染水処理のシステムの概要


放射能汚染水の主な放射性核種濃度(ベクレル)と半減期

核種	Sr-90	Sb-125	Ru-106	Cs-137	Co-60	I-129
放射能濃	9.2×10^{4}	100	90	17	1.2	7.1×10^{-2}
度(Bq/cm³)	(29 Y)	(3 Y)	(1 Y)	(30 Y)	(5 Y)	$(1.6 \times 10^7 Y)$

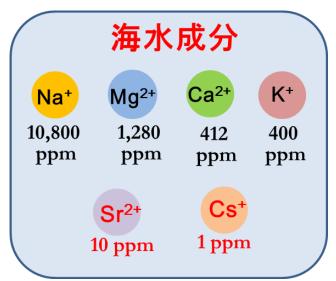
放射線汚染水処理の流れ

多核種除去設備 (ALPS) トリチウム以外 62放射性核種 セシウム吸着装置 (SARRY) Cs, Sr除去 (2015年5月末時点)

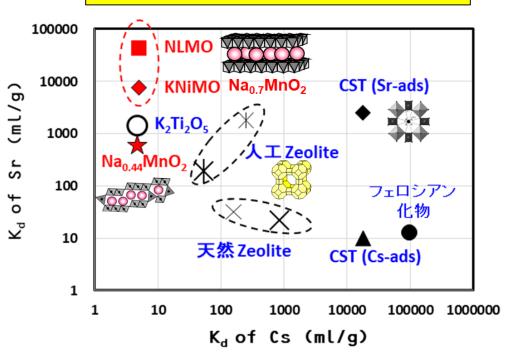
多核種除去装置(ALPS)

放射線汚染廃棄物は高性能容器 (HIC) で一時保管施設に輸送・保管

高濃度海水成分が含有するため、高性能吸着剤が必要



従来技術の問題点と本技術の特徴


高性能吸着剤の必要性:

海水成分を含有する汚染水から

Sr²⁺とCs⁺の選択除去

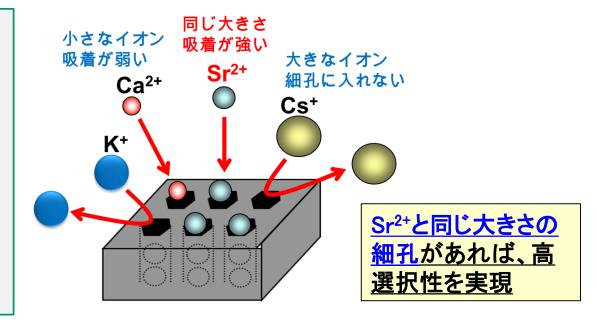
海水条件におけるSr²⁺とCs⁺吸着 剤の選択性(K_d)の比較

Cs⁺吸着剤: 高選択性吸着剤(CST, フェロシアンなど) K_d=10⁴

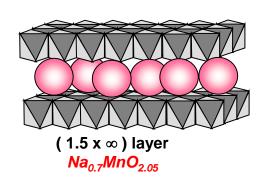
が開発された。

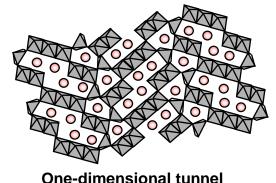
Sr²⁺吸着剤: 選択性不十分(CST, チタン酸塩、A-Zeolite) K_d=10³

高選択吸着剤の開発が必要

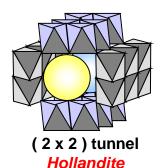

イオンふるい効果を利用した高選択性Sr²⁺吸着剤

イオンふるい効果

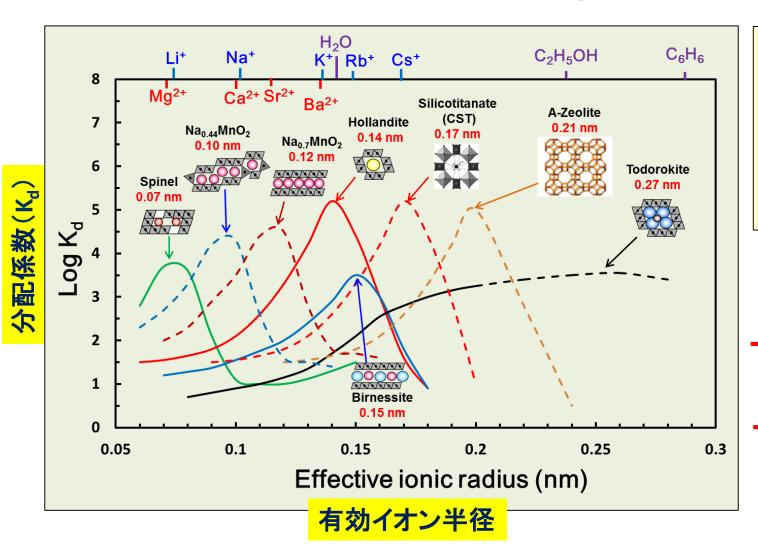

細孔より大きなイオン 吸着選択性・吸着容量が低い


細孔より小さいイオン 入れるが結合が弱い 吸着選択性が低い

細孔と同じ大きさのイオン 強く結合→高い吸着選択性



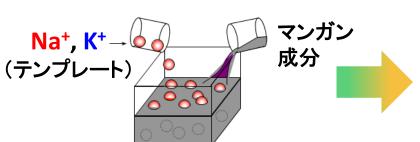
開発した層状構造とトンネル構造マンガン酸化物系吸着剤



One-dimensional tunnel Na_{0.44}MnO₂

イオンふるいの細孔径と吸着選択性(Kd)との関係

イオンふるい 効果: 細孔と同じ 大きさのイオ ンを強く吸着

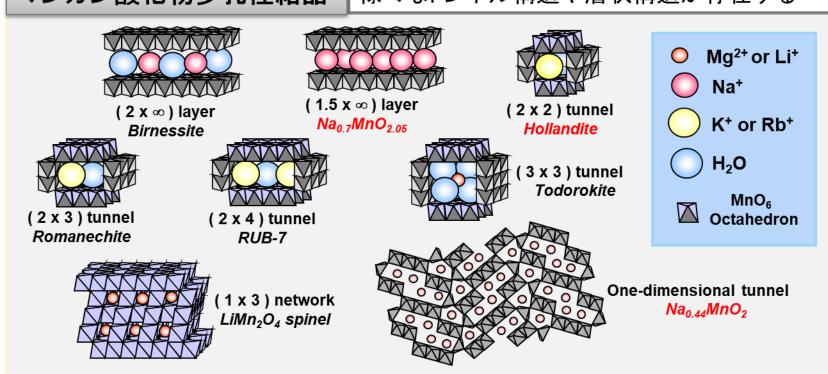

実測値

予測值

<u>イオンふるい効果なし:</u> イオンの大きさ順でイオン吸着選択性が増加 (1価) Li⁺ < Na⁺ < K⁺ < Rb⁺ < Cs⁺ (2価) Mg²⁺ < Ca²⁺ < Sr²⁺ < Ba²⁺

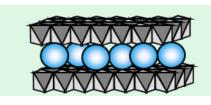
本技術の概要・従来技術との比較

トンネル構造 Na_{0.44}MnO₂


> 層状構造 Na_{0.7}MnO_{2.05}

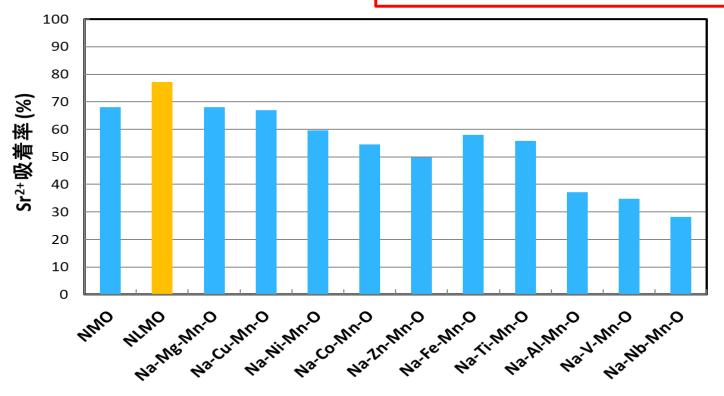
Sr²⁺の吸着特性評価

バッチ試験カラム試験


マンガン酸化物多孔性結晶

様々なトンネル構造や層状構造が存在する

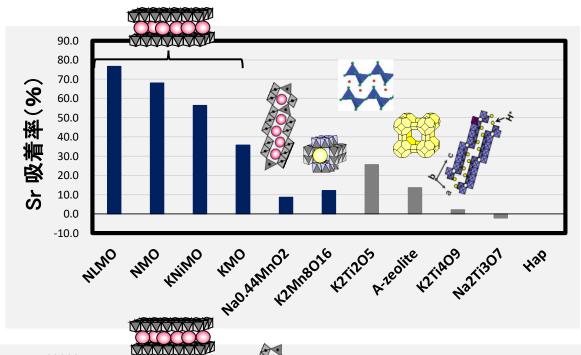
Na-T-Mn-O(NMO, NLMO, NTMO)系吸着剤のSr²⁺吸着率


 $Na_{0.7}T_xMn_{1-x}O_2$

測定条件:

溶液:10ppm Sr²⁺含有海水(1L)

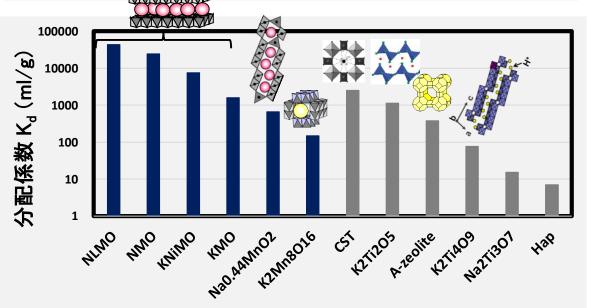
吸着剤: 1g


吸着時間: 2日撹拌

最適な原料組成: Na-Li-Mn-O

海水中のSrバッチ吸着性比較

Sr吸着率(%)


測定条件

溶液:10ppm Sr²⁺含有

天然海水(1L)

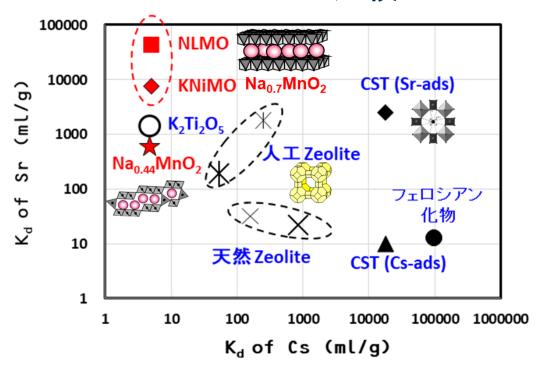
吸着剤:1g

吸着時間: 2日撹拌

Sr吸着分配係数

測定条件

溶液: 10ppm Sr²⁺ 含有


天然海水(1L)

吸着剤: 10 g

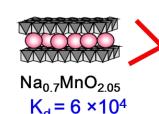
吸着時間: 2日撹拌

海水条件におけるSr²+とCs+吸着剤の選択性(Kd)の 比較

核燃料リサイクル放射性汚染 水処理条件での比較

(溶液濃度)

Sr: 10mg/L


Ca: 100mg/L

Mg: 50mg/L

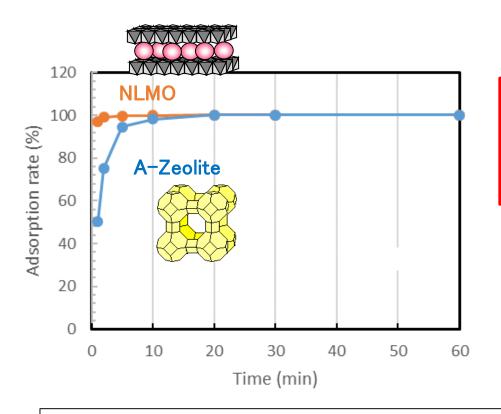
NaNO₃: 400g/L(飽和溶液)

	Kd (mL/g)			
NLMO	3860			
KNMO	1030			
K2Ti2O5	821			
A-zeolite	44			

海水条件におけるSr²⁺吸着選択性の順

 $K_d = 3 \times 10^3$

K₂Ti₂O₅ $K_d = 10^3$



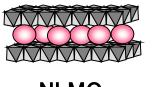
Na_{0.44}MnO₂ A-Zeolite K₂Mn₈O₁₆ $10^3 > K_d > 10^2$

NLMO吸着剤の Sr選択性は、 CSTのSr及び Cs選択性を超え た。

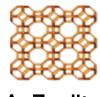
吸着剤のSr²⁺吸着速度の比較

測定条件

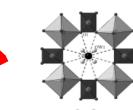
固液比:0.4 g / 40 mL **溶液:**100 ppm Sr²⁺


蒸留水 (中性)

NLMO

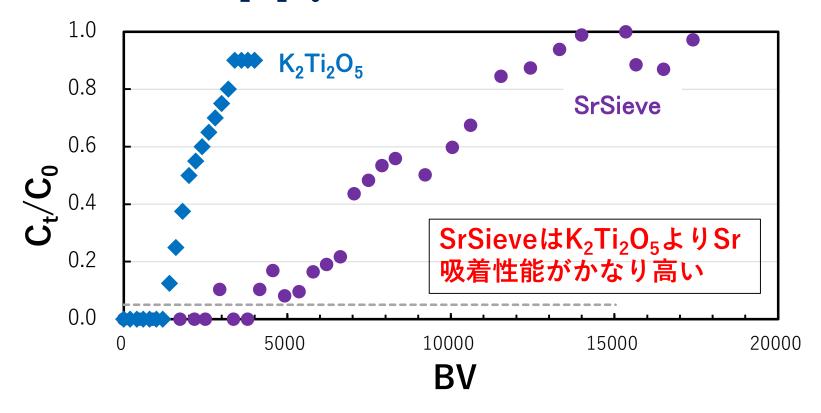

1分で97%Sr吸着 A-Zeolie

1分で50%Sr吸着


Sr²⁺の吸着速度は、吸着剤の細孔径と構造に依存する

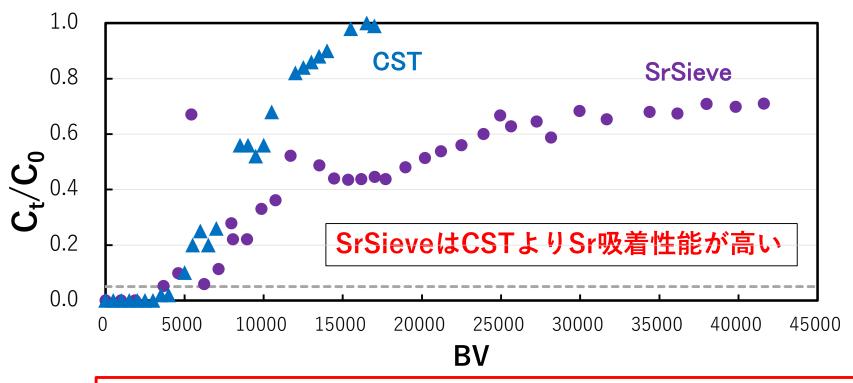
A-Zeolite

造粒体の作製とカラム吸着性能の比較


吸着剤の造粒体(NLMO) SrSieve粒径: 0.3~0.6 mm

SrSieve(NLMO)とK2Ti2O2とのカラムSr吸着性能比較

カラム: Φ1.6cm×H1.6cm BV: 3.2m


溶液: 1 ppm Sr, 1 ppm Cs, 1 ppm Mg, 10 ppm Ca,

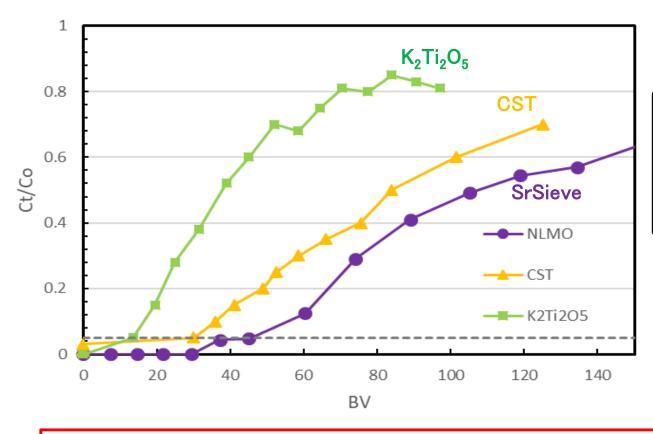
10,000 ppm Na

流速: 線速度(LV) = 2 m/h 、空間速度 = 20 BV/h

SrSieve (NLMO)とCSTとのカラムSr吸着性能比較

カラム: Φ1.6cm×H1.6cm BV: 3.2m

溶液: 1/22人工海水(0.4 ppm Sr)


流速: SrSieve: 線速度(LV)=4 m/h 、空間速度=40 BV/h

CST: 線速度 (LV) = 2 m/h 、空間速度 = 20 BV/h

55日(42,000BV)通水、カラム詰まりなし。造粒体の強度が高い

核燃料リサイクル放射性汚染水処理条件での比較

5%破過BV体積

SrSieve: 46 BV

CST: 30 BV

K₂Ti₂O₅: 14 BV

核燃料リサイクル放射性汚染水処理条件

カラム: Φ16mm×H100mm、体積:20mL

溶液: 50 ppm Sr, 200 ppm Cs, 100 ppm Ca, 50 ppm Mg,

400g/L NaNO₃(飽和溶液)

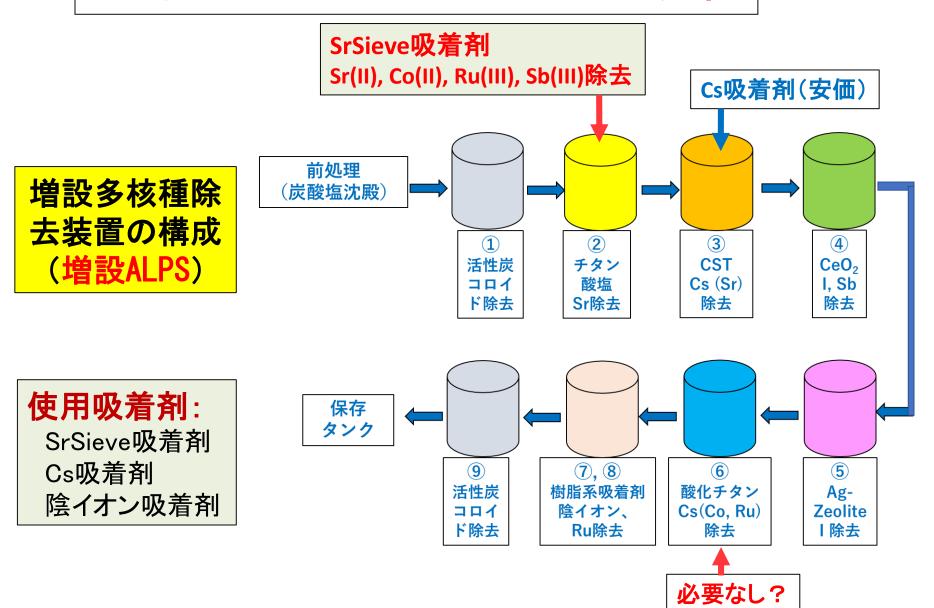
流速: 線速度 (LV) = 1.5m/h 、空間速度 = 15 BV/h

その他金属イオンの吸着特性

放射能汚染水の主な放射性核種濃度(ベクレル)と半減期

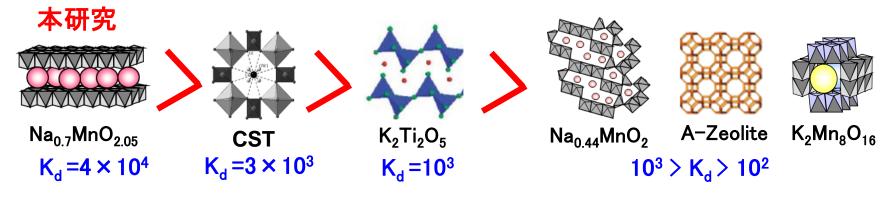
核種	Sr-90	Sb-125	Ru-106	Cs-137	Co-60	I-129
放射能濃度	9.2 × 10 ⁴	100	90	17	1.2	7.1×10^{-2}
(Bq/cm³)	(29 Y)	(3 Y)	(1 Y)	(30 Y)	(5 Y)	(1.6 × 10 ⁷ Y)

NLMOとA-Zeoliteの金属イオン吸着特性の比較(海水条件)


		Sr(II)	Co(II)	Ru(III)	Sb(III)	Cd(II)	Ni(II)	Pb(II)	Hg(II)
吸着率 (%)	SrSieve	77	99	98	84	99	62	94	59
(70)	A-Zeolite	13	10	71	42.	33	70	95	2
分配係数 (K _d)	SrSieve	4.3x10 ⁴	3.3x10 ⁵	5.4x10 ⁴	5.3x10 ³	2.6x10 ⁵	1.7x10 ³	1.6x10 ⁴	1.4x10 ³
	A-Zeolite	4.4x10 ²	1.1x10 ²	2.5x10 ³	7.2x10 ²	5.0x10 ²	2.4x10 ³	1.9x10 ⁴	17

注:10 ppm重金属含有海水

NLMOの金属イオンの選択性: Co(II) > Ru(III) > Sb(III) > Sr(II)


汚染水処理システムへの応用効果

実用化に向けた課題および企業への期待

海水条件におけるSr²⁺吸着選択性の順

- 1. 吸着剤造粒体の量産技術開発。
- 2. 大型カラム(吸着塔)を用いる吸着性能評価。
- 3. 福島第一原発電事故汚染水処理以外への用途開発、各種の金属イオンの吸着。

本技術に関する知的財産権

• 発明の名称: ストロンチウムイオン吸着剤とその製造法

• 出願番号 : 特願2017-551773 / PCT/JP2016/80081

出願人 : 香川大学、K&A環境システム

• 発明者 : 馮 旗

産学連携の経歴

- 2013年-2014年 株式会社サムスン横浜研究所と共同研究実施
- 2015年-2017年 神島化学工業株式会社と共同研究実施
- 2016年-現在 株式会社K&A環境システと共同研究実施
- 2012年-2013年 JST A-STEP 探索タイプ事業に採択
- 2013年-2013年 JST A-STEP シーズ顕在化タイプ事業に採択
- 2020年-2022年 JST A-STEPトライアウト事業に採択

お問い合わせ先

香川大学

産学連携・知的財産センター 吉本 篤規

TEL 087-832-1694

FAX 087-832-1673

e-mail yoshimoto@s-tlo.co.jp