

リンク機構を利用した 段差乗越え補助キャスター

東洋大学 理工学部 機械工学科 准教授 横田 祥

2021年8月31日

段差乗越えキャスター

"ちょっとした段差"を 正面からも斜めからも、スムーズかつ小さな力で、乗越えられる!

シンプルメカニズム により 電池やセンサは不要リンク機構 により 段差衝撃を踏破力に変換

スムーズでラクラクな段差乗越えを実現 斜めからの乗越えも補助する

シンプルメカニズム

約40mmの段差乗越え可能

スパナ1本で交換可能

Outline

<u>Part 1:本キャスターの方向性</u>

Part 2:従来技術の課題

Part 3:本技術と従来技術との比較

<u>Part 4: まとめ</u>

Part 5: 今後の方針

1. 方向性

背景:

ちょっとした段座でさえ,

車いすユーザにとって大きな障害

http://bemax.blog.so-net.ne.jp/2007-07-14

※一般のキャスタ(6インチ)の場合:

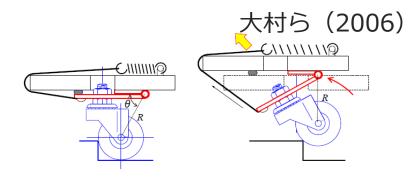
16mmの段差でさえ、乗越えが難しい傾向にある.

20mm以上では、練習とテクニックが必要.

モチベーション(出発点)

手こぎ車椅子ユーザのための

段差乗り越えの補助



従来技術

揺動型 車輪

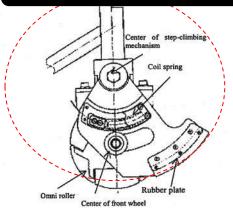
ヒンジ式キャスターマウント

Ohmura, Iwamoto, Shibuya, "Step Traveling of Wheel Chair with Hinged Caster Mount", Proc. of JSME Conf. on Robotics and Mechatoronics, vol. 2006, pp. 1P1-A17

コンビキャリースルーン

補助輪が路面の段差 (3cmまで) を捉えます

後方へ移動します。



3cmの段差まで対応

車輪径 拡大型

全方向車輪と補助板

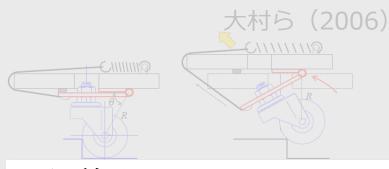
林ら(2003)

Hayashi, Kawakami, Matsuo, Yuinamochi, "A Study on a Multi-function Wheelchair with Auxiliary Step-climbing Mechanism", JSME Proc. of the Welfare Engineering Symposium 2003, Vol. 2003, No. 3, pp. 29-32

段差解消キャスター

(株)ジャパンハウジング

介護保険給付対象 リース:300円/月



2. 従来技術

車輪 揺動型

ヒンジ式キャスターマウント

段差をいなすのみ。 (前後方向)

上下方向の補助はなし

補助輪が路面の段差 (3cmまで)を捉えます 補助輪が前へ進み、前輪が

3cmの段差まで対応

lount".

車輪径 拡大型

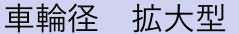
斜めからの段差乗越えに 対応不可

林ら (2003)

斜めから段差に侵入すると, キャスタの首振りにより, 乗越えに大きな力が必要となる

2. 従来技術

車輪 揺動型


段差をいなすのみ. (前後方向)

上下方向の補助はなし

解決技術

段差をいなす力を 上下方向の力に変換

E万回 課題

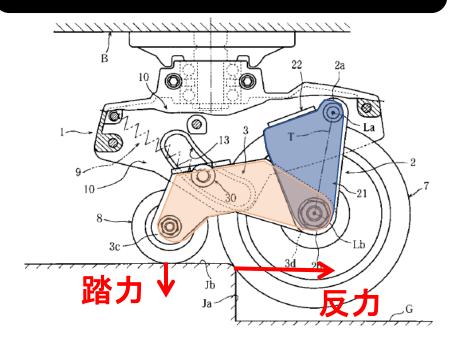
斜めからの段差乗越えに 対応不可

斜めから段差に侵入すると, キャスタの首振りにより, 乗越えに大きな力が必要となる

段差解消キ・スター ジャパンハウジング

解決技術

キャスタの首振りを 固定するメカニズム


Bcmの段差まで対応

2. 従来技術の課題

車輪 揺動型

段差対応キャスター装置 特開2019-99066

段差衝突時の反力(前後方向)の力を踏力に変換し、段差乗越えを実現.

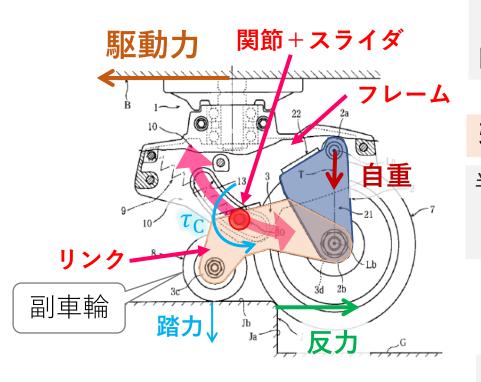
キャスタユニット 特開2019-137211

2. 従来技術の課題

車輪径 拡大型

キャスタユニット 特開2019-137211

課題


ロック機構の構成に 電源が必要

2. 従来技術の課題

車輪 揺動型

段差対応キャスター装置 特開2019-99066

乗越えの条件, 関節周りでの **半時計周りのトルク**τ_Cが必要

構造的な弱点

副車輪を支持するリンクは,

フレームに対して上下方向に動く.

関節+スライダ部は、自重を構造的に支えることが不可能.

弱点から生じる課題

半時計周りのトルクτcを発生させるために,

自重に打ち勝つだけの踏力が必要

踏力は**駆動力**に依存する.

大きな踏力を得るために,大きな駆動力を必要とする.

課題

関節+スライダ部が自重を構造的に支持できない

自重に打ち勝つだけの駆動力が必要

2. 従来技術の課題と解決

車輪 揺動型

段差対応キャスター装置

性期2010 00066

従来技術課題1

リンク構造により, 自重に打ち勝つだけの駆動力が必要

両てこ機構の採用により 従来技術より0.4倍の力で 乗越えることができる

段差衝突時の反力(前後方向)の力を踏力に変換し、段差乗越えを実現.

車輪径 拡大型

キャスタユニット

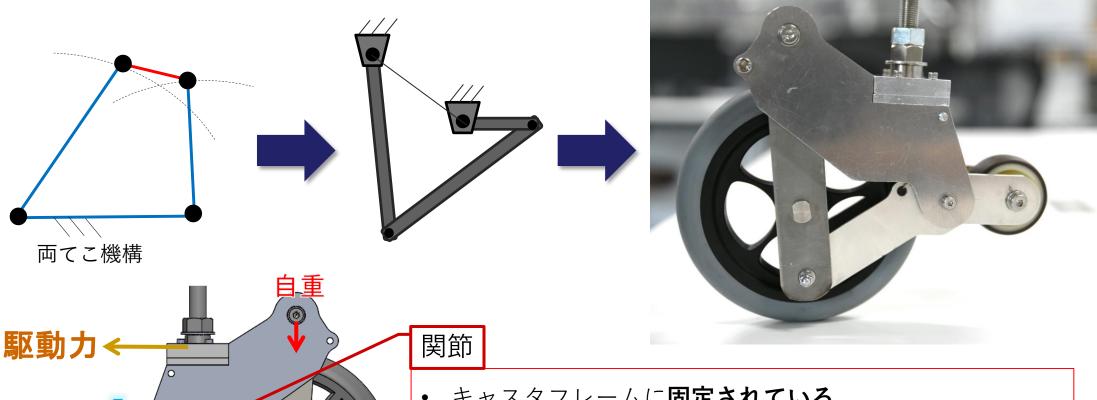
従来技術課題2

キャスタの首振りを抑制するために 電源が必要

· 補助プレート

副車輪と主車輪の2点接地により 斜めからの乗越えも可能。 (電源不要)

段差乗越え時に首振りを固定し, 斜めからの乗越えを可能とする

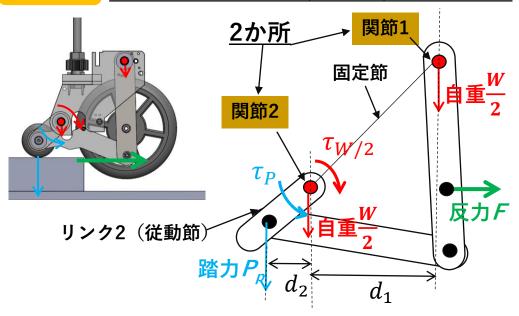


本技術の特徴

解決技術

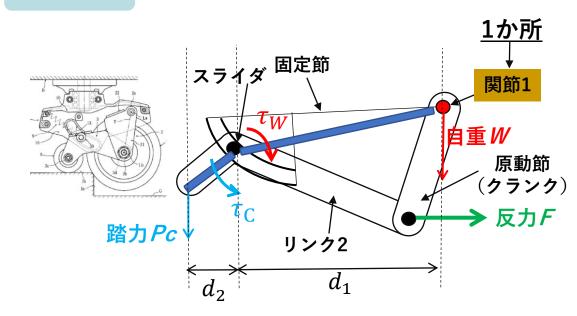
両てこ機構(4節リンク機構の一種)の原理を利用 (運動の向き,力の大きさ等を変えることができる機構)

- キャスタフレームに**固定されている**.
- 関節部で自重を**構造的に支持できる**.
- 主車輪を段差に対して必要以上に押し付ける必要がない.
- 小さな力で段差乗越えが可能となる.


3. 本技術の特徴

(従来技術との対比)

本技術


リンクとフレーム(固定節)と連結箇所

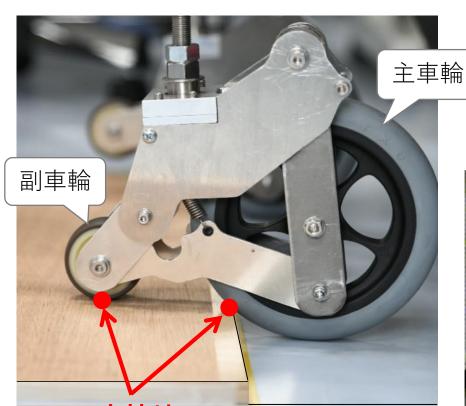
- リンク2は固定節(フレーム)に連結されている.
- リンク2の根元で自重を**構造的に支持する**.
- au_P を発生させるために必要な踏力 $P_p=rac{1}{2}rac{d_1}{d_2}W$
- 踏力 P_p と反力Fの関係: $F = \frac{1}{1.8}P_p$
- 乗越えに必要な反力: $F = \frac{1}{3.6} \frac{d_1}{d_2} W$

従来技術

リンクとフレーム(固定節)と連結箇所

- リンク2は固定節(フレーム)に対し連結されていない.
- リンク2は自重を**構造的に支持できない**.
- au_C を発生させるために必要な踏力 $P_C=rac{d_1}{d_2}W$
- 踏力 P_p と反力Fの関係: $F = \frac{1}{1.4}P_c$
- 乗越えに必要な反力: $F = \frac{1}{1.4} \frac{d_1}{d_2} W$

両てこ機構の採用により 従来技術より0.4倍の力で 乗越えることができる



3. 本技術の特徴

解決技術

両てこ機構(4節リンク機構の一種)の原理を利用

2点接地

斜めからの段差乗越えでも, キャスタの首振りを抑制できる.

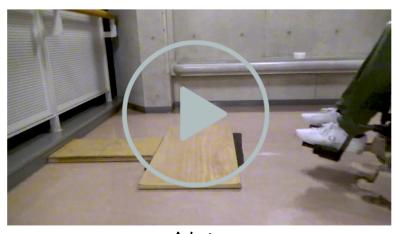
1点接地では, 首振りが起こる.

副車輪と主車輪の2点接地により 斜めからの乗越えも可能。 (電源不要)

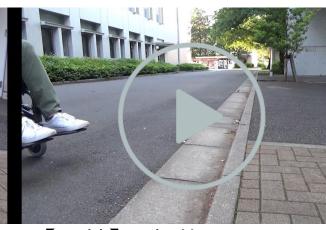
3. 本技術の特徴 (動き)

車輪径6インチ, 段差高40mm

段差乗越えのために特別なアクションを必要とせず、そのまま乗越え可能



段差乗越えキャスター



"ちょっとした段差"を 正面からも斜めからも、スムーズかつ小さな力で、乗越えられる!

シンプルメカニズム により 電池やセンサは不要リンク機構 により 段差衝撃を踏破力に変換

斜め

正面

【比較】一般的なキャスター

スムーズでラクラクな段差乗越えを実現 斜めからの乗越えも補助する

シンプルメカニズム

約40mmの段差乗越え可能

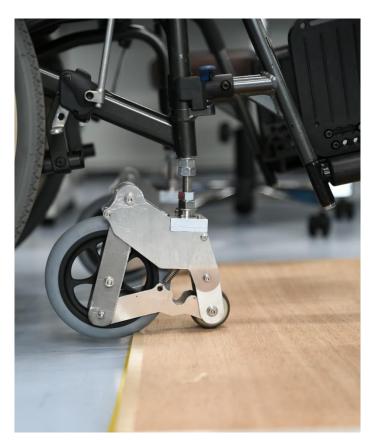
スパナ1本で交換可能

段差乗越えキャスター

実用化へ向けた課題

- リンク長,素材の最適化
- 耐久性の評価

応用先


荷物用台車、ベビーカー等、 段差のある環境を移動する キャスター利用製品全般

方 向

• 市販化を目指した共同研究または ライセンス提供

企業様への期待

- 市販化へのご支援
- 販路の開拓,または,現有販路のご提供
- 耐久試験実施へのご支援

情報

本技術に関する知的財産権

• 発明の名称:移動体用車輪装置

• 出願番号 : 特願2021-064590

• 出願人 : 学校法人 東洋大学

• 発明者 :横田祥

お問い合わせ先

東洋大学

産官学連携推進センター

(研究推進部 産官学連携推進課)

TEL 03-3945-7564

FAX 03-3945-7906

e-mail ml-chizai@toyo.jp

お問い合わせ お待ちしております.

