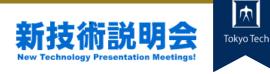
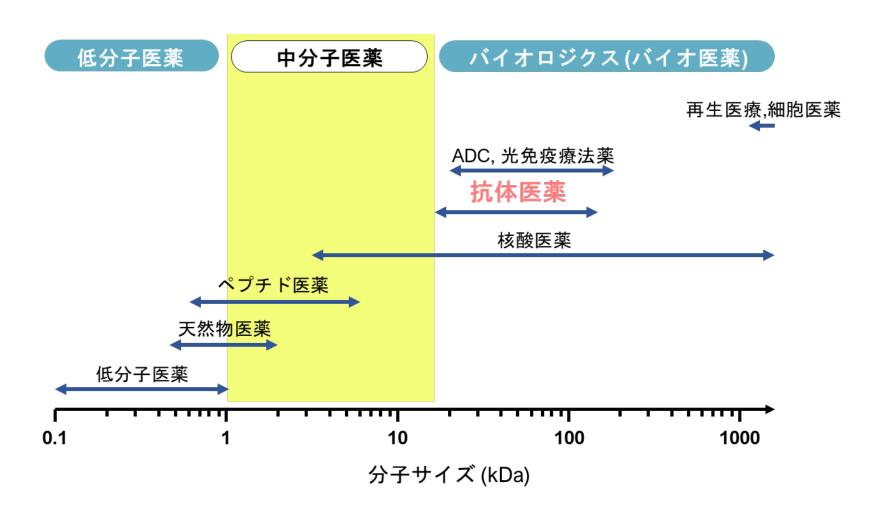


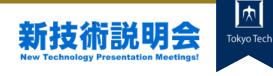
抗体医薬の薬効をコピーした 代替分子開発のための 分子ライブラリー探索技術


2022年11月15日 東京工業大学 新技術説明会


東京工業大学 生命理工学院 テニュアトラック助教 門之園 哲哉

- 1. 新技術が解決しようとする課題
- 2. 新技術と既存技術の比較
- 3. 想定される用途
- 4. 実用化に向けた課題
- 5. 企業への期待
- 6. 本技術に関する知的財産権
- 7. お問い合わせ先

医薬品の種類と分子サイズ



抗体医薬は分子量が大きい (15-150 kDa)

抗体医薬の特徴

乳がん

多発件骨髄腫

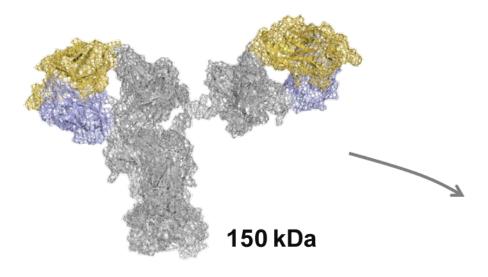
COVID-19

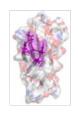
長所

- ・高い抗原親和性
- ・高い抗原特異性

短所

- ·高い製剤コスト
- ·低い組織浸透性




分子サイズの小さな代替分子の開発が求められている

小型の抗体代替分子

2-15 kDa

抗体医薬

- ・高い抗原親和性
- ・高い抗原特異性

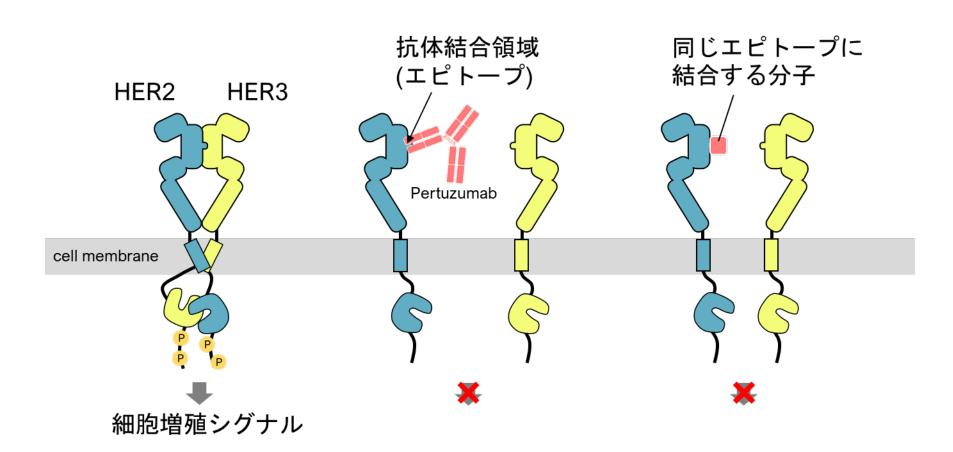
- ·高い製剤コスト
- ·低い組織浸透性

小型の抗体代替分子

- ・高い抗原親和性
- ・高い抗原特異性
- ・安い製剤コスト
- ・高い組織浸透性

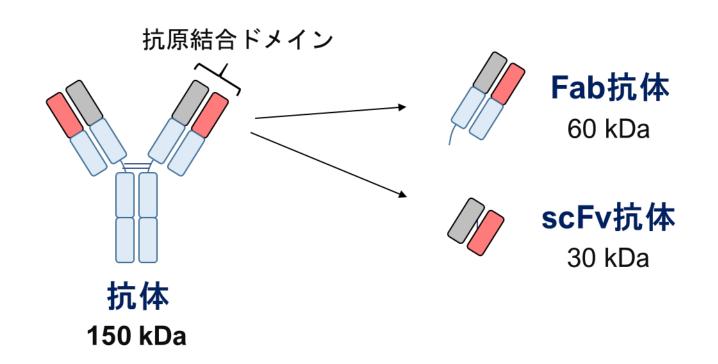
どのように小型抗体代替分子を開発するか?

抗体医薬と同じ薬効を有する 小型代替分子を探索する技術の開発


- 1. 新技術が解決しようとする課題
- 2. 新技術と既存技術の比較
- 3. 想定される用途
- 4. 実用化に向けた課題
- 5. 企業への期待
- 6. 本技術に関する知的財産権
- 7. お問い合わせ先

抗体医薬代替分子開発のポイント

HER2陽性乳がん治療抗体医薬 パージェタ (Pertuzumab)の例



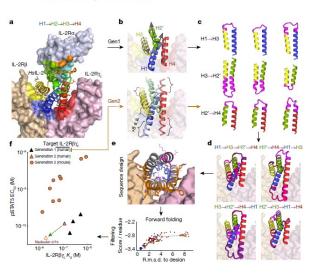
抗体と同じエピトープに結合することが必要

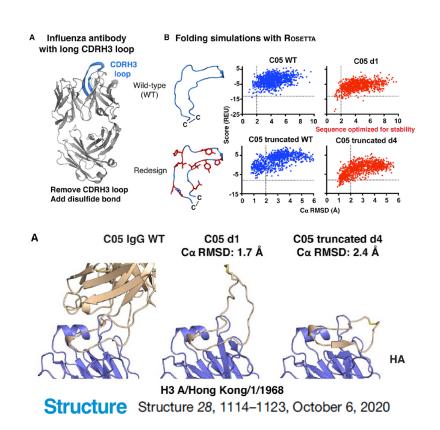
既存技術の紹介①

抗体の低分子化

- 抗体と同じエピトープを持つ
- ・実績も多く、ほぼ全ての抗体に適用できる
- 30 kDaより小さく出来ない

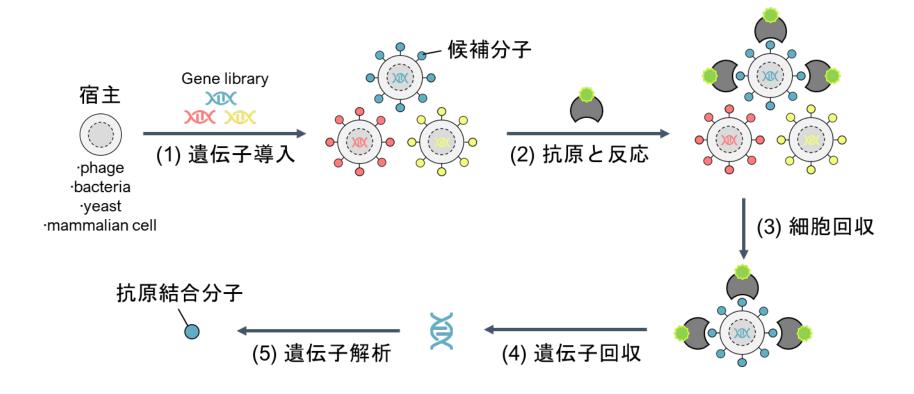
既存技術の紹介②




インシリコ・デザイン

Rosetta software

Nature 565, 186-191 (2019)

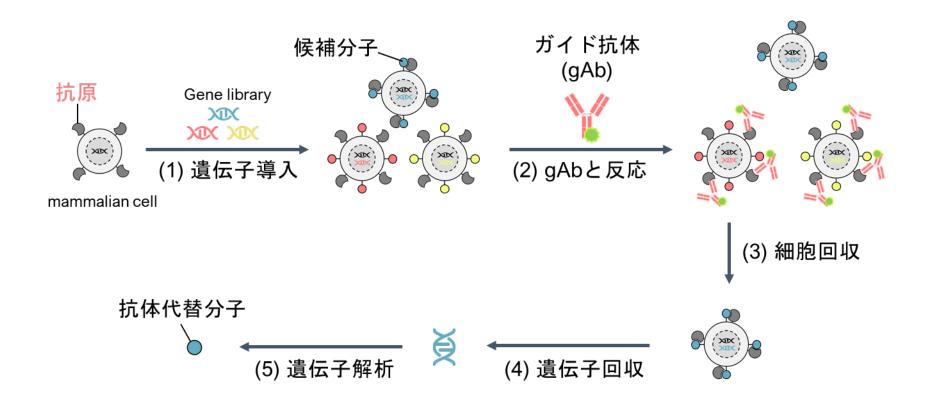

- 抗体と同じエピトープを持つ
- 抗体の構造情報が必要
- ・実施例がまだ少ない(汎用性はあるのか?)

既存技術の紹介③

抗原結合分子スクリーニング

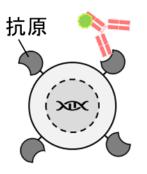
- ・抗体の構造を必要としない
- ・実績も多く、高確率で抗原結合分子を取得できる
- ・エピトープを選択できない(薬効が不明)

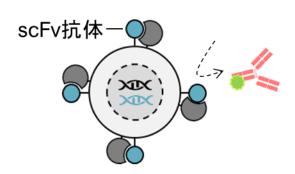
新技術と既存技術の比較


	抗体の低分子化	インシリコ・ デザイン	抗原結合分子 スクリーニング	新技術
小型化できるか (2-15 kDa)	*	0	0	0
抗体と同じエピ トープを持って いるか	0	0	*	0
抗体の構造情報 がなくても使え るか	0	*	0	0

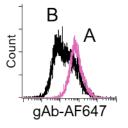
新技術により小型抗体代替分子を容易に開発できる

ガイド抗体を用いた抗体代替分子スクリーニング

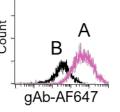

新技術により小型抗体代替分子を容易に開発できる


1細胞の膜上で評価できるのか?

A. 抗原発現細胞

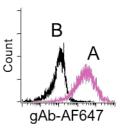

ガイド抗体が 結合できる

B. scFv抗体+抗原発現細胞


scFv抗体が抗原をマスクしガイド抗体が結合できない

抗原: HER2 scFv: Pertuzumab gAb: Pertuzumab

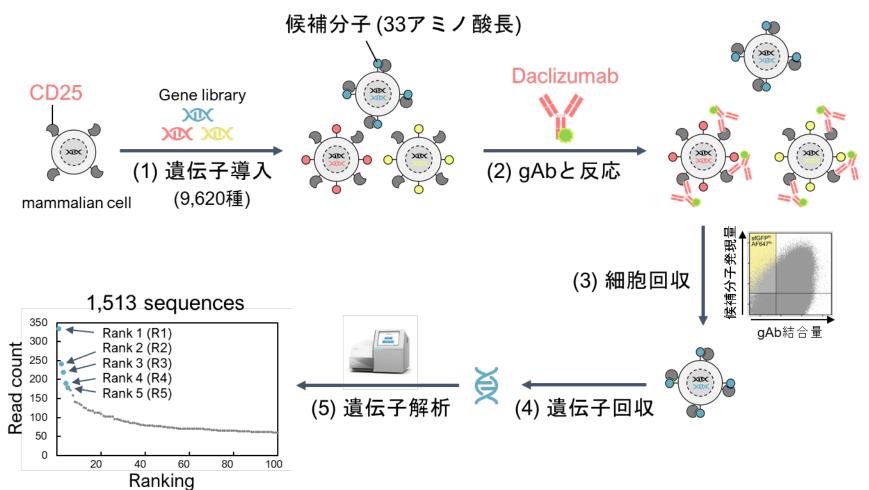
抗原: CD25


scFv: Daclizumab gAb: Daclizumab

抗原: PD-1

scFv: Nivolumab

gAb: Nivolumab




1細胞の膜上でgAbの結合の有無を評価できる

gAbを利用したCD25結合ペプチドの探索

CD25結合ペプチドの結合性評価

R1

ERPYACPVESCDRRFTG GGVLTAHIRIHTGQKP

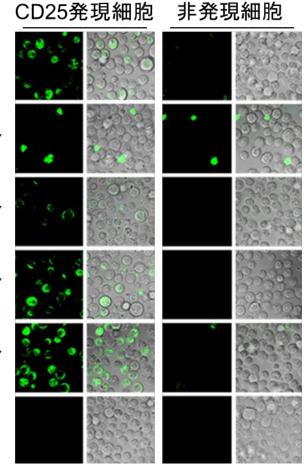
R2

ERPYACPVESCGGVFDY FETLTRHIRIHTGQKP

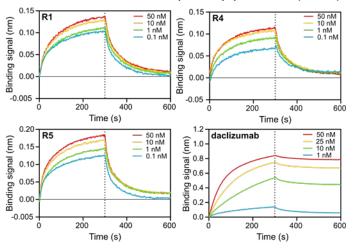
R3

ERPYACPVESCGGVFDY APRLTRHIRIHTGQKP

R4


ERPYACPVESCGGVFDY HIGLTRHIRIHTGQKP

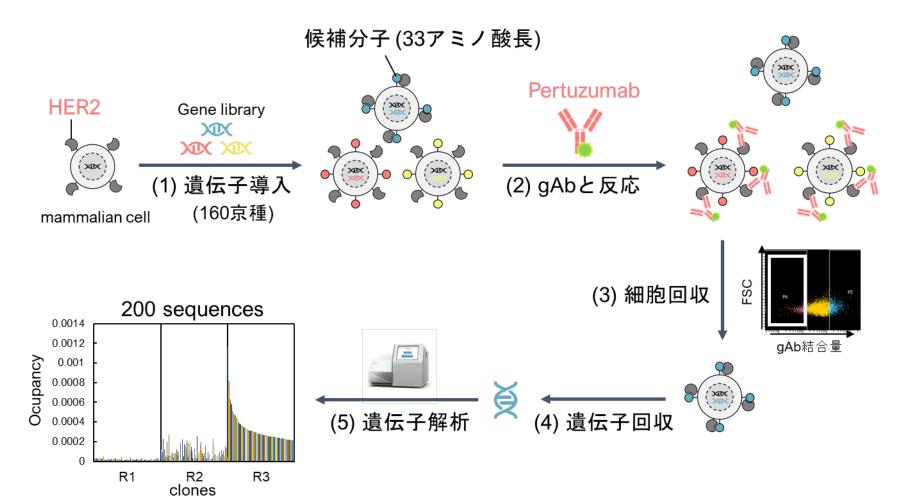
R5


ERPYACPVESCGGVFDY KVQLTRHIRIHTGQKP

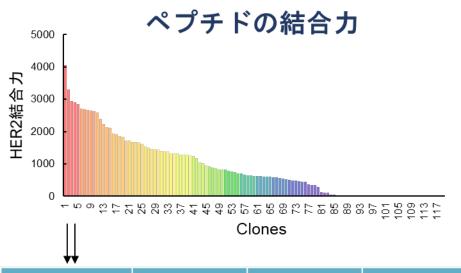
Scaffold

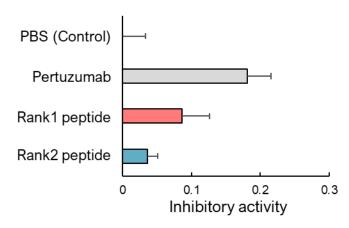
ERPYACPVESCDRRFSR SDELTRHIRIHTGQKP

Sci Rep, 11 (1), 22098 (2021)

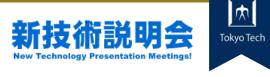

	Κ _D (nM)	Κ _{on} (10 ⁴ Μ ⁻¹ s ⁻¹)	K _{off} (10 ⁻² s ⁻¹)
R1	37	72	1.4
R4	37	140	1.4
R5	31	38	1.4
Daclizumab	1.0	21	0.12

得られたペプチドは特異的かつ強くCD25に結合する


gAbを利用したPertuzumab代替ペプチドの探索



Pertuzumab代替ペプチドの評価


	K _D (nM)	k _{on} (10 ⁴ M ⁻¹ s ⁻¹)	k _{off} (10 ⁻² s ⁻¹)
R1 peptide	35.9	53.0	1.90
R2 peptide	252	9.14	2.30
Pertuzumab	0.735	65.1	0.0478

ペプチドの薬効評価

HER2/HER3共発現細胞の 増殖抑制効果

抗体医薬の薬効をコピーした代替分子を取得できた

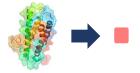
- 1. 新技術が解決しようとする課題
- 2. 新技術と既存技術の比較
- 3. 想定される用途
- 4. 実用化に向けた課題
- 5. 企業への期待
- 6. 本技術に関する知的財産権
- 7. お問い合わせ先

想定される用途

・既存の抗体医薬と同じ薬効を持つ中分子医薬の開発

・ 抗原検査キット用の抗体代替ペプチドの開発

・既存の抗体医薬と同じ薬効を持つ抗体医薬の開発


- AI創薬の教師データ取得

- 細胞内分子標的抗体からの中分子医薬の開発

細胞内の天然タンパク質からの抗原結合分子の開発

- 1. 新技術が解決しようとする課題
- 2. 新技術と既存技術の比較
- 3. 想定される用途
- 4. 実用化に向けた課題
- 5. 企業への期待
- 6. 本技術に関する知的財産権
- 7. お問い合わせ先

実用化に向けた課題と企業への期待

現状

モデル抗体を用いて探索技術を確立した

課題

実用化を指向した代替分子の探索

企業への期待

実用化に向けて、標的の設定から代替分子の 探索まで、共同で進めていきたい

- 1. 新技術が解決しようとする課題
- 2. 新技術と既存技術の比較
- 3. 想定される用途
- 4. 実用化に向けた課題
- 5. 企業への期待
- 6. 本技術に関する知的財産権
- 7. お問い合わせ先

本技術に関する知的財産権



発明の名称:抗体代替分子のスクリーニング方法

出願番号 : 特願2021-175474

出願人 : 国立大学法人東京工業大学

発明者 : 門之園 哲哉、近藤 科江

- 1. 新技術が解決しようとする課題
- 2. 新技術と既存技術の比較
- 3. 想定される用途
- 4. 実用化に向けた課題
- 5. 企業への期待
- 6. 本技術に関する知的財産権
- 7. お問い合わせ先

お問い合わせ先

東京工業大学 研究•産学連携本部

03 - 5734 - 2445TEL 03 - 5734 - 2482FAX e-mail sangaku@sangaku.titech.ac.jp

Thank You

