

5 製造技術

高融点材料の単結晶育成技術と 高密度単結晶材料

東北大学 金属材料研究所 准教授 横田 有為

2022年7月14日

単結晶とは、

1つの固体が単一の結晶から成り立っているときに、その固体を 単結晶と呼ぶ。(化学大辞典)

結晶とは、

固体であって、その内部構造が三次元的に構成原子(またはその 集団)の規則正しい繰り返しでできているものをいう。(化学大辞典)

多結晶 単結晶 単結晶の特徴と応用 基板 方位が単一〇異方性〇半導体 圧電素子

単結晶の育成手法(融液成長)

ブリッジマン法 (Bridgman-Stockbarger [BS]法) 浮遊帯域溶融法 (Floating Zone[FZ]法)

利点	 ・大型で高品質な 単結晶が作製可能 (量産化に利用) 	 ・大型で高品質な 単結晶が作製可能 (量産化に利用) 	 ・坩堝が不要 ・非調和溶融組成の 単結晶作製が可能
欠点	 ・遅い育成速度 ・坩堝コストと反応性 への懸念 	 ・遅い育成速度 ・坩堝コストと反応性 への懸念 	 ・高度な育成技術 ・大型化が困難 ・原料棒の作製が必要

µ-PD法による単結晶材料探索の特徴

多くの機能性単結晶の新規材料探索は <u>一部に限られてきた</u>。

<u>µ-PD法の結晶成長の効率性</u>

<mark>所技術説明会</mark> 従来のµ-PD法による酸化物単結晶材料探索

イリジウム(lr)や白金(Pt)の坩堝を用いた従来のµ-PD法では様々な機能性酸化物単結晶が作製されてきた。

<mark>所技術説明会</mark> 従来のµ-PD法による酸化物単結晶材料探索

レニウム(Re)坩堝による高融点のセスキオキサイド(RE_2O_3)単結晶作製が 行われてきた。 RE:希土類(Rare-earth)

タングステン(W)およびモリブデン(Mo)坩堝によるサファイア単結晶作製

μ-PD法(Mo坩堝)

m.p.2070°C

Y. Yokota, et al. *J. Cryst. Growth* **318**(2011) 983 C. Miyagawa, et al. *J. Cryst. Growth* **372** (2013) 95

	Мо	W
融点	2620°C	3422°C
使用雰囲気	還元	還元

W、Mo坩堝の課題

- ・坩堝の酸化を防ぐ必要性
- ・他の材料系での適用が少ない

W、Mo坩堝も酸化物との反応性の高さ が懸念されてきた。

<u>従来のMo、W坩堝の特徴</u>

- MoやWは酸化物との反応性の高さや
 育成結晶内の混入の可能性が指摘されてきた。
- MoやWの酸化を防ぐため、還元雰囲気下 (Ar+H₂等)での育成が行われてきた。

Ce:Y₂SiO₅ (Mo坩堝) m.p.2070°C

K. Kamada, et al., J. Cryst. Growth 535 (2020) 125510

しかし、近年MoやW坩堝を用いた複合酸化物単結晶の作製に関して 報告されるようになってきた。

S. Tkachenko, et al., J. Cryst. Growth 483 (2018) 195, K. Kamada, et al., J. Cryst. Growth 535 (2020) 125510

WやMo坩堝を用いることで高融点酸化物の単結晶育成が可能ではないか?

①育成条件の確立

坩堝	Mo坩堝
雰囲気	還元雰囲気
断熱材	処理なし

②高融点材料の育成

- ・La₂Zr₂O₇ [LZO] 融点: 2283℃ ・La₂Hf₂O₇ [LHO] 融点: 2418℃

酸化物	有効原子番号 Z _{eff}	密度[g/cm³]	融点[℃]
La ₂ Zr ₂ O ₇	49	5.88	2283
La ₂ Hf ₂ O ₇	64	7.86	2418
Lu ₂ SiO ₅	66	7.32	2047
Gd ₂ SiO ₅	59	6.61	1950
Bi ₄ Ge ₃ O ₁₂	75	7.13	1050
Gd ₃ Ga ₃ Al ₂ O ₁₂	54*	6.63	1850

育成プロセス

新技術説明会 Mo坩堝とW坩堝を用いた結晶育成

Mo坩堝とW坩堝を用いてLZOの単結晶育成(通常断熱材、Ar+H₂)を行った。

- ・結晶育成には成功したものの、得られた<結晶は不透明で黒色であった。
- ・Mo坩堝は結晶育成中に揮発したMoが坩堝上部に付着していた。

一方で、W坩堝は結晶育成後も明確な劣化は生じなかった。

W坩堝で作製したLZO結晶 の粉末XRDパターン

W坩堝で作製したLZO結晶 のBSE像とEDXスペクトル

<mark>通常の断熱材とAr+H₂雰囲気下</mark>において、W坩堝を用いて作製したLZO結晶 には、W金属が混入していることが分かった。

W坩堝と脱酸素断熱材を用いた結晶育成

W坩堝と脱酸素処理した断熱材を用いて、安定した固液界面形状を維持しながら 結晶育成を行うことができた。

W坩堝と脱酸素断熱材で作製した LZO結晶の粉末XRDパターンとBSE像

W坩堝と脱酸素断熱材で作製した LZO結晶のXRCと背面反射Laue像

脱酸素断熱材とAr雰囲気下において、W坩堝を用いて作製したLZO結晶は、

- W金属を含まないLZO単相
- ・明瞭なLaueパターン
- ・シャープな左右対称のX線ロッキングカーブ

を示した。

LZO結晶のアニール効果と透過率

La₂Hf₂O₇ (LHO)単結晶の育成

育成したLHO結晶のXRCとLaue像

LZOと同様の育成条件により、

より高い融点のLHO(融点2418℃) も単結晶を育成

することができた。

16

無添加の結晶と同様の育成条件により、Euを添加した単結晶も育成した。

Eu:LZOとEu:LHO単結晶の発光特性

フォトルミネッセンス

高融点酸化物の有効原子番号と密度

酸化物	有効原子番号 Z _{eff}	密度[g/cm³]	融点[℃]
La ₂ Zr ₂ O ₇	49	5.88	2283
La ₂ Hf ₂ O ₇	64	7.86	2418
Lu ₃ TaO ₇	69	9.68	2380

既存シンチレータ			
PbWO ₄	76	8.28	1123
Lu ₂ SiO ₅	66	7.32	2047
Gd ₂ SiO ₅	59	6.61	1950
Bi ₄ Ge ₃ O ₁₂	75	7.13	1050
Gd ₃ Ga ₃ Al ₂ O ₁₂	54*	6.63	1850

Lu₃TaO₇の結晶育成

W坩堝と脱酸素断熱材による Lu₃TaO₇結晶の育成の様子

Lu₃TaO₇単結晶

Ce添加Lu₃TaO₇結晶

無添加およびCe添加Lu₃TaO₇結晶のフォトルミネッセンススペクトル

新技術まとめ

- ・世界最大の高密度(9.68 g/cm³)を有する
 シンチレータ単結晶として高エネルギー
 放射線用の検出器に利用が可能である。
- 現在はPbWO₄(8.2 g/cm³)が用いられている
 高密度シンチレータ応用用途を置き換えること
 が可能である。
- シンチレータ以外にも、高密度を特徴とした
 透明な単結晶としての応用展開を期待している。

- 現在、透明なLu₃TaO₇単結晶の育成に成功して おり、発光中心元素の添加が可能であることを 示した。
- 今後、放射線励起下の発光特性(発光量、エネル ギー分解能、蛍光寿命等)が優れた発光中心元素 とその濃度を明らかにする。
- 実用化に向けて、高融点酸化物単結晶のCz法による育成を実現し、最適な発光中心を添加した Lu₃TaO₇単結晶の大口径化を実現する。

- 未解決の発光中心の最適化については、現在
 実施中であり1年以内の材料探索により克服できると考えている。
- シンチレータ単結晶を搭載した放射線検出器を 開発可能な企業との共同研究を希望する。
- また、Ir坩堝等を用いた機能性単結晶の量産化を 実施中、もしくは考えている企業には、本育成 技術の導入が有効と思われる。

本技術に関する知的財産権

- ・発明の名称
- 出願番号
- 出願人
- 発明者

- :結晶材料、シンチレータ、 および放射線検出器
 - : 特願2022-092879
 - : 東北大学
 - : 横田有為、須田貴裕、 堀合毅彦、吉野将生、 鎌田圭、吉川彰

本技術に関連する産学連携

 2020年12月 JST A-Step 産学共同(育成型)に採択 「高速結晶成長技術による高機能シンチレータ結晶 の大規模探索とデバイス化」

(研究責任者:横田有為) *東北大学のみで実施

• 2023年3月 JST A-Step終了予定

問い合わせ先

東北大学 産学連携機構 総合連携推進部 Website https://www.rpip.tohoku.ac.jp/jp/

TEL 022-795 - 5275

- FAX 022-795 5286
- E-mail souren@grp.tohoku.ac.jp