
高温高濃度アルカリ水溶液中における 電気分解技術

山口県産業技術センター 技術支援部 材料技術グループ 専門研究員 中邑 敦博

新技術の説明

高電流密度帯での電気めっきにより

①大きな表面積と②本質的に高い活性

を有した貴金属フリーな アルカリ水電解用触媒被覆電極の合成技術

効果

①表面積の増大

防蝕や装飾の観点では、不良めっきとされる「焦げ」を形成する高電流密度帯でめっきすれば、特異な外観を示し、大きな表面積が得られる。

②本質的に高い活性

地球温暖化対策に向けた取り組みが世界各国で活発化

COP21「パリ協定」(2015年)

世界全体の平均気温の上昇を産業革命前より 1.5 °C以下に抑える事が定められた

- ※COP26(2021年) 日本ではゼロエミッション化のため、
- 二酸化炭素貯留(CCS: Carbon dioxide Capture and Storage)等の技術革新を行う

政府間パネル

(IPCC: Intergovernmental Panel on Climate Change)

第5次報告 2050年には50年に一度の大雨が毎年のように襲う

第6次報告 平均海面水位は過去120年で0.2 m上昇

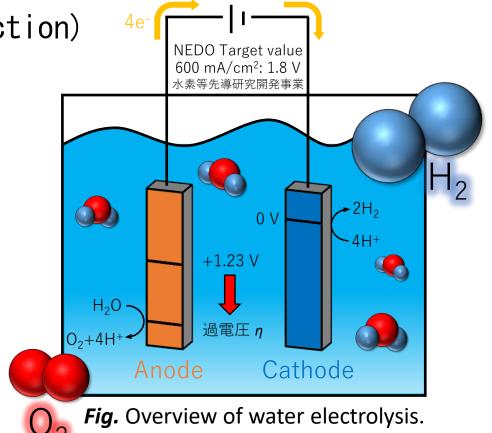
水素社会の概要

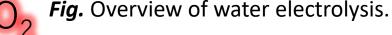
CO2フリーな水素(グリーン水素)をエネルギーの担い手(キャリア)として考える新しい社会モデル

水素製造コストを20円 Nm⁻³以下(経産省目標) セル電解電圧値として「600 mA dm⁻²:1.8 V以下」(NEDO目標)

「水素社会」の実現には陽極の高機能化が必要

★酸素発生反応(Oxygen Evolution Reaction)


 $2H_2O \rightarrow O_2(g) + 4H^+ + 4e^-$


→反応が遅く,大きな過電圧が必要

貴金属酸化物(RuO2, IrO2, etc.)

→触媒活性は高いが、コストが高い

非貴金属触媒の開発が必要

従来技術とその問題点

従来の触媒被覆電極は、 化学合成した触媒をバインダーを用い基材に接合する

水熱合成法の問題点

- ✔触媒間、触媒-基材間の導電性低下から活性が低下する
- ✔物理的な剥離による耐久性の低下
- ✔不均一な物性
- ✔多段階ステップの合成ルートであるため、コストが高い
- **√**スケーラブルでない

新技術の特徴・従来技術との比較

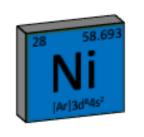
電気めっきによる合成であるため、 触媒を基材に直接接合できる

電気めっき法の利点

- ✔核生成、膜成長の制御が容易
- **√**ワンポット-ワンステップで合成が可能であり、低コスト
- ✔均一な触媒層を形成できる

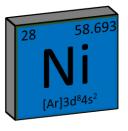
想定される用途

電気化学デバイスに用いられる各種電極


- 水電解(アルカリ、排水処理、食塩、有用物質生産)
- 燃料電池
- 化学、バイオセンサー



触媒開発の着想


これまで検討された非貴金属触媒

★遷移金属化合物(酸化物,水酸化物,LDH等)による代替が望まれる

D. A. Corrigan J. Electrochem. Soc., 134 377 (1987)

- ★Ni-Sn合金は高い耐食性, 光沢性を有する H. Enomoto et al., *Kinzoku Hyoumen Gijutsu*, **27**, 569-573 (1976).
- ★HER活性が高く、陰極として利用可能

M. B. F. Santos et al., *Electrochim. Acta,* 37, 29-32 (1992).

遷移金属の効果とNi-Snを組み合わせた[異元素ドープNi-Sn触媒]の0ER活性に対する①めっき浴組成及び②電流密度の影響を調べた

触媒作製方法

基材 30メッシュのNi平織金網

前処理 1分間のアルカリ電解脱脂及び酸洗浄

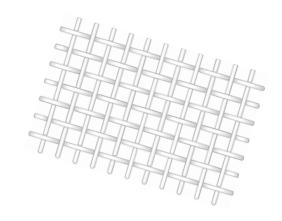


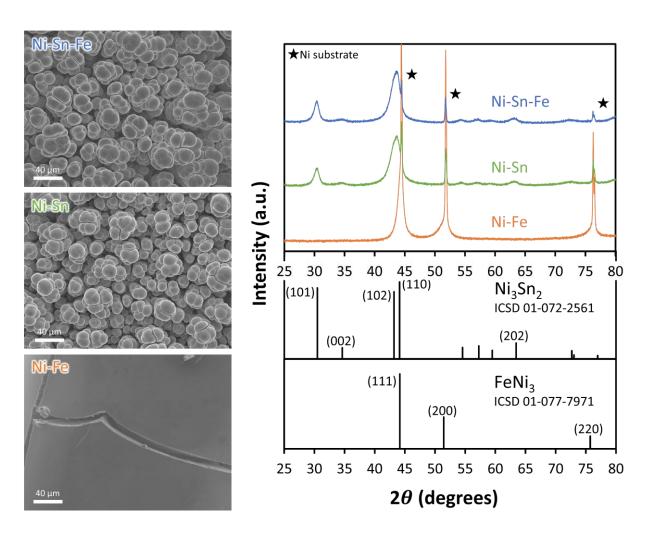
Table めっき浴組成および電析条件.

浴組成		電析条件	
NiCl ₂	電流密度	(mA/cm²)	-10~-200
$SnCl_2$	Hq		8
FeCl ₃	•	(0.0)	
$K_4P_2O_7$	浴温度	(°C)	50
$C_2H_5NO_2$	攪拌		Yes

浴組成の影響

■ Ni, Sn, Feのコンビネーションを変えた

Table 1 仕込みめっき浴組成.


		Ni-Sn-Fe	Ni-Sn	Ni-Fe
NiCl ₂	(M)	0.06	0.06	0.06
$SnCl_2$	(M)	0.02	0.02	N/A
FeCl ₃	(M)	0.02	N/A	0.02
$K_4P_2O_7$	(M)	0.5	0.5	0.5
$C_2H_5NO_2$	(M)	0.1	0.1	0.1

[※] 電流密度-120 mA/cm².

Table 2 各触媒表面のEDX結果.

		Ni-Sn-Fe	Ni-Sn	Ni-Fe
Ni	(at%)	74.20	81.82	85.09
Sn	(at%)	22.80	18.18	-
Fe	(at%)	3.0	-	14.91

[※] 触媒表面をランダムに10点の平均値

各触媒のOER性能(1)

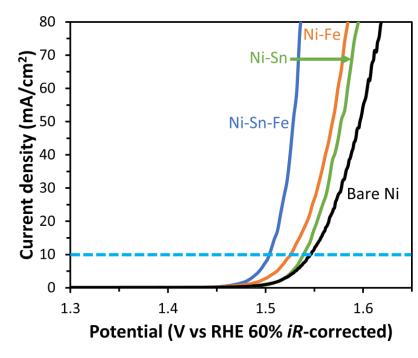
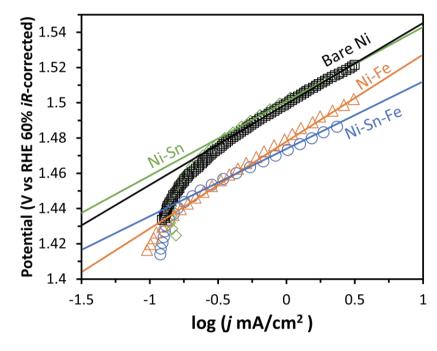


Fig. 電流密度-120 mA/cm²でNiメッシュ上に析出した各触媒の1.0 M KOH中でのLSV(掃引速度: 0.01 mV/s)(上).

Table 各触媒の過電圧.


η at 10 mA/cm ² (mV)			
Ni-Sn-Fe	276		
Ni-Sn	309		
Ni-Fe	298		
Bare Ni	317		

 $\times \eta = E_{\text{vs RHE}} - 1.23$

各触媒のOER性能(2)

Fig. 電流密度-120 mA/cm²でNiメッシュ上に析出した各触媒の1.0 M KOH中でのLSV(掃引速度: 0.01 mV/s)に対応するターフェルプロット.

Table 各触媒の反応速度			
ターフェル勾配			
(mV/dec)			
Ni-Sn-Fe	39		
Ni-Sn	40		
Ni-Fe	42		
Bare Ni	59		

耐久性評価

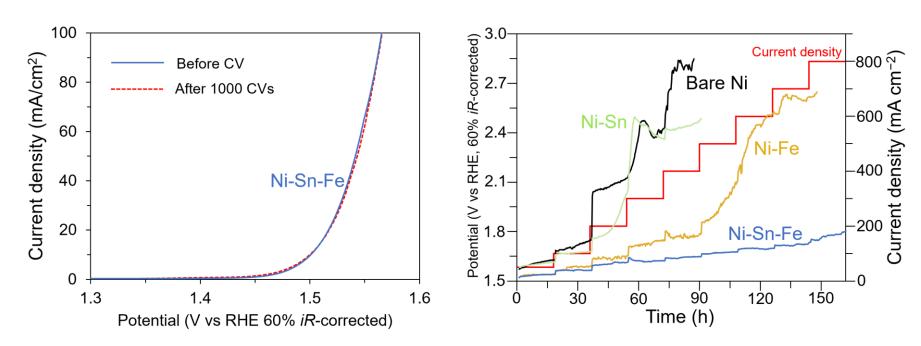
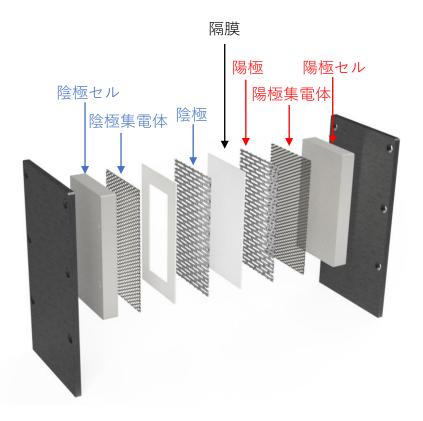


Fig. サイクリックボルタンメトリー解析前後のLSV (左)及び定電流電解試験 (右).


Table 報告された遷移金属-Sn触媒とのOER特性の比較.

Electrode	Substrate	η at 10 mA/cm ² (mV)	Durability (h)	Reference
Ni-Sn-Fe	Nickel	276	162 (+50∼+800 mA/cm²)	This study
Ni-Sn-Fe	Nickel foam	253	12 (+200 mA/cm ²)	Y. Wu et al., <i>Electrochim. Acta</i> 301 , 39-46 (2019).
Ni-Mn-Sn	Graphite	576-605		N. Taherian et al., Surf. Rev. Lett. 27, 1950122 (2019).
Ni-Co-Sn	Copper foil	270	10 (+5 mA/cm ²)	Y. Liu et al., Int. J. Hydrog. Energy 44,

二極式セルでの触媒性能評価

■ 工業電解を模擬した条件での評価を実施

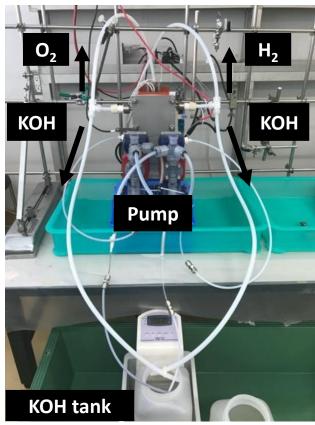


Fig. 二極式セルの展開斜視図と装置全体の外観.

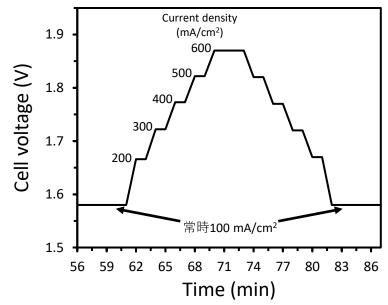
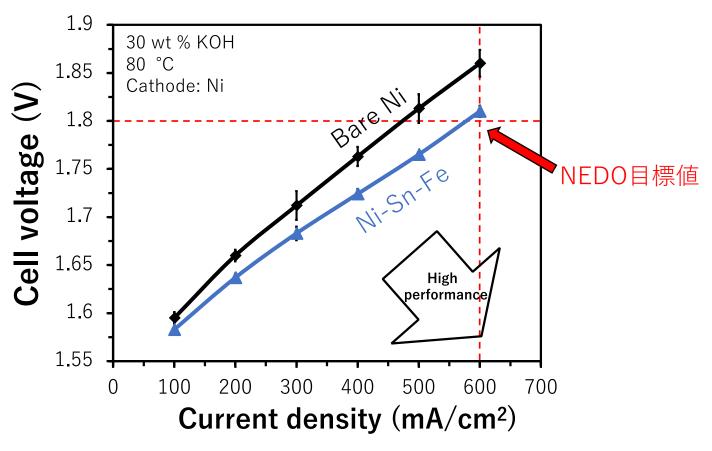


Fig. セル電圧の測定例.

実験条件 ✓ 80 °C, 30 wt% KOH水溶液 ✓常時100 mA/cm²での電解

√一回の測定は各電流密度で合計4分計測


✔合計3日間(24分間の平均値)

その他特徴 √接液部は一部を除き,全てNi

二極式セル性能評価結果

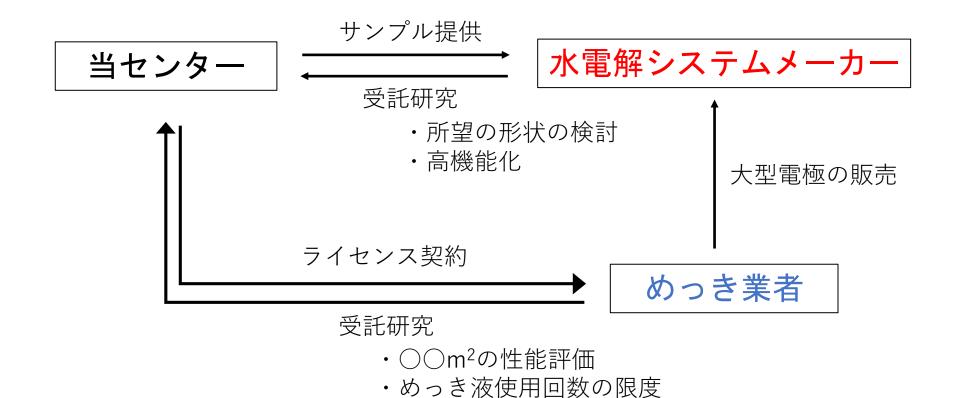
Fig. 電流密度-120 mA/cm²でNiメッシュ上に析出した Ni-Sn-Feを商用条件のセルの陽極として用いた際の性能.

まとめ

高電流密度帯での電気めっきにより、Ni-Sn-Fe触媒被覆電極を合成した。酸素発生過電圧、反応速度ともに良好な値を示した。

電流密度+50~+800 mA/cm²の定電流電解で162 hの間、安定した電位を保持した。

過酷な工業条件(80°C, 30 wt% KOH水溶液)を模擬したセルに最適化したNi-Sn-Fe電極を使用するとセル電圧値1.81 Vと良好な値を示した。


実用化に向けた課題

- ・電極の更なるスケールアップ 現状、50×100 mmでの評価にとどまっている
- 長期安定性の確認 現状、3日間の連続運転の結果のみ

企業への期待

・めっき時間

新技術説明会 New Technology Presentation Meetings!

本技術に関する知的財産権

発明の名称:水電解用の非貴金属電極とその製造

出願番号:特願2021-213273

出願人: (地独) 山口県産業技術センター

発明者:中邑 敦博、村中 武彦

お問い合わせ先

(地独)山口県産業技術センター 技術支援部 技術管理室

TEL 0836-53-5051

FAX 0836-53-5070

E-mail info@iti-yamaguchi.or.jp

