

高出力CW小型テラヘルツ信号源 とその応用の開発

東京工業大学 工学院電気電子系 准教授 鈴木 左文

2023年11月28日

テラヘルツとは

◇ 光と電波の中間の未開拓領域
 ◇ 種々の応用への期待
 イメージング・分光分析(生体、物性、化学物質・・・・)、
 セキュリティ、医療、大容量通信・信号処理・・・・

Beyond5G/6G

イメージング・レーダー応用

製品ライン、空港、スタジアム等での3次元透過検査

医薬品·医療応用

薬物の検査

Codeine Cocaine Sucrose

(Dobroiu et al., Meas. Sci. Technol. 17, 2006)

照射による細胞機能の制御

https://www.tohoku.ac.jp/japanese/press_20180713_THz.p df Yamazaki, et al, *Sci. Rep.* 8, 9990 (2018)

タンパク質重合体の断片化

Yamazaki, et al, *Sci. Rep.* 10, 9008 (2020)

テラヘルツ信号源

- ▶ 量子カスケードレーザ (QCL)
 - THz-QCL, 4THz, 250K (Khalatpour, et al, 2021)
 - DFG-QCL, 0.4-6 THz, RT (Fujita, et al, 2022)
- ► トランジスタ (HBT, HEMT, CMOS)
 - InP-HBT, 688GHz (Urtega, et al, 2017)
 - SiGe BiCMOS 1mW@530GHz 16el. (Pfeiffer, *et al*, 2014) 80μW@1THz 42el. (Hu, *et al*, 2018)
 - Si CMOS

8.1mW@675GHz 144el. (Gao, et al, 2023) 8mW@280GHz 30el. (Buadana, *et al*, 2020)

- ▶ 共鳴トンネルダイオード (RTD)
 - 1.98THz (Izumi, et al., 2017)
 - 0.73mW @1THz, 89素子インコヒーレント (Kasagi, *et al*, 2019)
 - 11.8mW @0.45THz, 36素子コヒーレント (Koyama, *et al*, 2022)

従来技術とその問題点

テラヘルツ信号源

- ・量子カスケードレーザー
 →室温動作はまだ実現していない/効率悪い
 ・シリコンCMOS発振器
 →最近進展著しいが、高周波では効率低下
- ・共鳴トンネルダイオード
 →1素子当たり出力や効率は他と比べて優位
 →1素子当たりの出力はミリワットに届かない⇒新技術1
 →デバイス作製プロセスが複雑⇒新技術2
 →レーダーなど応用への適用性が不明⇒新技術3

共鳴トンネルダイオード

従来デバイス

新技術1(高出力発振器)の特徴

- 低インダクタンス空洞共振器 + 大面積RTDで高出力高周波発振
- 安定化抵抗を共振器の外に配置し熱源分散
- ダイポールアンテナで基板下方向へ鋭い放射

新技術1(高出力発振器)の特徴

SEM

発振スペクトル

11

新技術2(簡易構造デバイス)の特徴

新技術2(簡易構造デバイス)の特徴

2

Mesa size (μm^2)

0

3

13

1.0 1.2 1.4

Oscillation frequency (THz)

(Yu, et al, IEEE EDL, 42, 982, 2021)

新技術1と2の融合

● 空洞共振器構造とMIMキャパシタのない簡易構造の融合デバイス
 ● 高周波で高出力、かつ、デバイス面積も小さい

新技術3(レーダー)の特徴

AMCW+2Dスキャンによる3Dイメージング

- 横方向分解能: ~THz波の波長 (0.56 mm)
- 高さ方向の精度: 0.032mm(標準偏差)
 決定要因と改善方法
 - ・S/N比 ⇒ RTDの高出力化
 - ・AMCWの高精度化 ⇒ 変調の高周波化
 - ・信号処理方法 ⇒ キャリブレーション高精度化

新技術3(レーダー)の特徴

- AWGからのチャープ信号によりRTDを変調

 反射波を変伝し、復調信日に参照信日をことこ
- 反射波を受信し、復調信号と参照信号をミキシング
- ビート信号の周波数より距離を算出
- 複数対象物でも測定が可能

- AWGからのチャープ信号によりRTDを変調
- 反射波を受信し、復調信号と参照信号をミキシング
- ビート信号の周波数より距離を算出
- 複数対象物でも測定が可能

(Ito, et al, IRMMW-THz, 2021)

従来技術との比較

- 空洞共振器により、従来達成できなかった 1素子でのミリワット動作に成功。
- 従来素子ではパターニング回数が多かったが、構造の簡略化により半分程度に削減し、 プロセス負担大幅減。同程度の発振特性。
- RTDデバイスに適したサブキャリアレー ダー方式により、サブミリ精度3次元計測、
 - ミリメートル高精度リアルタイム距離測定

電力密度によるデバイス比較

他のデバイス開発状況

K. Tsuruda et al., RFIT, 193, 2020

Patch antenna array (Canon)

- RTDデバイスの開発は日本を中心に進展
- 企業ではローム・キヤノンが開発を進めている (デバイス提供の準備は整っている)

想定される用途

- アレイデバイスにより簡単に高出力を得る ことが可能であり、イメージング用途では すぐにでも活用できる。セキュリティ、品 質検査など。
- 信号処理は必要だが距離測定も十分可能で あり、3Dイメージングに発展できる。モー ションキャプチャーなど。
- 高度な集積とシリコンとの融合が必要だが、
 将来的に無線通信は大きなターゲット。

実用化に向けた課題

- イメージング・レーダーにおいて照射テラ ヘルツの散乱光をとらえるのが難しい(受 信器の高感度化が望まれる)。
- 共鳴トンネルダイオードデバイスで、無線
 通信に必須となるビーム掃引はまだ未達成。
- コヒーレント通信(IQ変復調)に未対応。

- シンプルなテラヘルツイメージングを利用したい場合は導入は容易。
- 高精細なイメージングには高感度テラヘルツ カメラの技術が必要で、また、標準的な無線 通信規格に対応するには、シリコン集積回路 との融合が必要であり、カメラの技術やアナ ログCMOSの技術を持つ、企業との共同研究 を希望する。

本技術に関する知的財産権

	新技術1	新技術3	新技術2
	発明1	発明2	発明3
発明の名称	高出カテラヘルツ発振器	サブキャリア変調方式 テラヘルツレーダー	テラヘルツ発振器及び その製造方法
出願番号	日本:2018-216285 米国:17/290,811	日本:2019-232617 米国:17/128,633	日本:2022-503130 米国:17/794,503 欧州:21760120
出願人	東京工業大学	東京工業大学	東京工業大学
発明者	鈴木 左文 淺田 雅洋 田中 大基	鈴木 左文 淺田 雅洋 Adrian Dobroiu	鈴木 左文 淺田 雅洋 MAI VANTA 鈴木 雄成

お問い合わせ先

東京工業大学 研究・産学連携本部 TEL 03-5734-2445 FAX 03-5734-2482 e-mail sangaku@sangaku.titech.ac.jp