

高出力CW小型テラヘルツ信号源とその応用の開発

東京工業大学 工学院電気電子系 准教授 鈴木 左文

2023年11月28日

テラヘルツとは

- ◇光と電波の中間の未開拓領域
- ◇ 種々の応用への期待 イメージング・分光分析(生体、物性、化学物質・・・)、 セキュリティ、医療、大容量通信・信号処理・・・・

Beyond5G/6G

超高速・ 大容量诵信

・通信速度の向上:最大100Gbps超へ

eMBB

5G

新しいユースケースによる 要求条件の組み合わせ

- 100倍以上の超大容量化 (bps/m²)
- ・ 上りリンクの超大容量化

超カバレッジ 拡張

- 陸上(面積)カバー率100%
- ·空(高度1万m)・海(200海里)・宇宙 へのチャレンジ

超低消費電力 ・低コスト化

- さらなるビット当たりのコスト低減
- ・充電不要な超低消費電力デバイス

6G 超低遅延

- ・E2Eで1ms以下程度の超低遅延
- 常時安定した低遅延性

超高信頼通信

- 幅広いユースケースにおける品質保証 (Reliabilityは99.99999%まで向上)
- レベルの高いセキュリティと安全性

超多接続& センシング

- 平方km当り1,000万デバイス
- 高精度な測位とセンシング (< 1cm)

無線ネットワーク技術への要求

(2021NTT Docomo ホワイトペーパーより)

Sariedeen, et al, IEEE Com. Magazine, 69, May 2020

6Gのユースケース

イメージング・レーダー応用

製品ライン、空港、スタジアム等での3次元透過検査

不良視界下でも 検知可能なレーダー

3次元顔認証

モーションキャプチャ

医薬品•医療応用

薬物の検査

Codeine Cocaine Sucrose

(Dobroiu et al., Meas. Sci. Technol. 17, 2006)

照射による細胞機能の制御

アクチンタンパク質の繊維化を促進

https://www.tohoku.ac.jp/japanese/press_20180713_THz.p df Yamazaki, et al, *Sci. Rep.* 8, 9990 (2018)

タンパク質重合体の断片化

アクチン繊維の断片化

テラヘルツ信号源

赤外 可視

☞ 光源は様々なTHz応用のキーデバイス

マイクロ波・ミリ波 THz帯

10GHz 100GHz 1THz 10THz 100THz

THz Gap

単体半導体THz光源の現状

▶ 量子カスケードレーザ (QCL)

- THz-QCL, 4THz, 250K (Khalatpour, et al, 2021)
- DFG-QCL, 0.4-6 THz, RT (Fujita, et al, 2022)
- ▶トランジスタ (HBT, HEMT, CMOS)
 - InP-HBT, 688GHz (Urtega, et al, 2017)
 - SiGe BiCMOS 1mW@530GHz 16el. (Pfeiffer, et al, 2014) 80μW@1THz 42el. (Hu, et al, 2018)
 - Si CMOS 8.1mW@675GHz 144el. (Gao, et al, 2023) 8mW@280GHz 30el. (Buadana, et al, 2020)

▶ 共鳴トンネルダイオード (RTD)

- 1.98THz (Izumi, et al., 2017)
- 0.73mW @1THz, 89素子インコヒーレント (Kasagi, et al, 2019)
- 11.8mW @0.45THz, 36素子コヒーレント (Koyama, et al, 2022)

従来技術とその問題点

テラヘルツ信号源

- 量子カスケードレーザー⇒室温動作はまだ実現していない/効率悪い
- ・シリコンCMOS発振器 →最近進展著しいが、高周波では効率低下
- 共鳴トンネルダイオード
 - →1素子当たり出力や効率は他と比べて優位
 - →1素子当たりの出力はミリワットに届かない⇒新技術1
 - →デバイス作製プロセスが複雑⇒新技術2
 - →レーダーなど応用への適用性が不明⇒新技術3

共鳴トンネルダイオード

従来デバイス

新技術1(高出力発振器)の特徴

- 低インダクタンス空洞共振器 + 大面積RTDで高出力高周波発振
- 安定化抵抗を共振器の外に配置し熱源分散
- ダイポールアンテナで基板下方向へ鋭い放射

新技術1(高出力発振器)の特徴

SEM

発振スペクトル

- **▶ 低損失のための高い共振器高1.2μmの形成に成功**
- 0.86 mW @ 0.61 THzの高出力発振を達成 (最新データでは>1mW発振を達成済)
- 共振器長/を長くすることでさらなる低抵抗化、 高出力化が可能

新技術2(簡易構造デバイス)の特徴

従来構造

新構造

構造と作製プロセスの 大幅な簡略化

- MIM構造が不要
- EBリソグラフィ 6回 → 2回に減少 作製時間の大幅短縮
- 従来構造と同等の 発振特性

発振特性

高出力発振

新技術2(簡易構造デバイス)の特徴

スプリットリング共振器 (SRR) の集積

- ・SRR周辺に電界が集中 → 導体損失の低減
- 実験:
 - 1.2 THzまでの発振
 - CSPとのマッチングによる 30 μW @ 0.9 THz
 - 理論とよい一致

Mesa size (µm²)

(Yu, et al, IEEE EDL, 42, 982, 2021)

新技術1と2の融合

- 空洞共振器構造とMIMキャパシタのない簡易構造の融合デバイス
- 高周波で高出力、かつ、デバイス面積も小さい

ステージスキャン可能な測定システム

反射振幅による 2Dイメージ

AMCWによる 高さ計測

AMCW+2Dスキャンによる3Dイメージング

- 横方向分解能: ~THz波の波長 (0.56 mm)
- 高さ方向の精度: 0.032mm(標準偏差)決定要因と改善方法
 - ・S/N比 ⇒ RTDの高出力化
 - ・AMCWの高精度化 ⇒ 変調の高周波化
 - ・信号処理方法 ⇒ キャリブレーション高精度化

- AWGからのチャープ信号によりRTDを変調
- 反射波を受信し、復調信号と参照信号をミキシング
- ビート信号の周波数より距離を算出
- 複数対象物でも測定が可能

- AWGからのチャープ信号によりRTDを変調
- 反射波を受信し、復調信号と参照信号をミキシング
- ビート信号の周波数より距離を算出
- ・ 複数対象物でも測定が可能

(Ito, et al, IRMMW-THz, 2021)

従来技術との比較

- 空洞共振器により、従来達成できなかった 1素子でのミリワット動作に成功。
- 従来素子ではパターニング回数が多かったが、構造の簡略化により半分程度に削減し、 プロセス負担大幅減。同程度の発振特性。
- RTDデバイスに適したサブキャリアレー ダー方式により、サブミリ精度3次元計測、 ミリメートル高精度リアルタイム距離測定 を実現。

電力密度によるデバイス比較

電力密度

= 出力/チップエリア

THz IC chip

出力はアレイ化により大き くなるが、チップ面積も大 きくなる。

→小さいチップ面積で高出 力を実現するには高電力密 度が必要。

Terahertz consortium, https://www.scat.or.jp/THz-conso/

他のデバイス開発状況

RTD module (ROHM)

K. Tsuruda et al., RFIT, 193, 2020

Patch antenna array (Canon)

Koyama, et al., IEEE Trans THz Sci Tech., 12, 510, 2022.

- · RTDデバイスの開発は日本を中心に進展
- 企業ではローム・キヤノンが開発を進めている (デバイス提供の準備は整っている)

想定される用途

- アレイデバイスにより簡単に高出力を得る ことが可能であり、イメージング用途では すぐにでも活用できる。セキュリティ、品 質検査など。
- 信号処理は必要だが距離測定も十分可能であり、3Dイメージングに発展できる。モーションキャプチャーなど。
- 高度な集積とシリコンとの融合が必要だが、 将来的に無線通信は大きなターゲット。

実用化に向けた課題

- イメージング・レーダーにおいて照射テラ ヘルツの散乱光をとらえるのが難しい(受 信器の高感度化が望まれる)。
- 共鳴トンネルダイオードデバイスで、無線 通信に必須となるビーム掃引はまだ未達成。
- コヒーレント通信(IQ変復調)に未対応。

企業への期待

- シンプルなテラヘルツイメージングを利用したい場合は導入は容易。
- 高精細なイメージングには高感度テラヘルツカメラの技術が必要で、また、標準的な無線通信規格に対応するには、シリコン集積回路との融合が必要であり、カメラの技術やアナログCMOSの技術を持つ、企業との共同研究を希望する。

本技術に関する知的財産権

新技術1

新技術3

新技術2

	発明1	発明2	発明3
発明の名称	高出力テラヘルツ発振器	サブキャリア変調方式 テラヘルツレーダー	テラヘルツ発振器及び その製造方法
出願番号	日本:2018-216285 米国:17/290,811	日本:2019-232617 米国:17/128,633	日本: 2022-503130 米国: 17/794,503 欧州: 21760120
出願人	東京工業大学	東京工業大学	東京工業大学
発明者	鈴木 左文 淺田 雅洋 田中 大基	鈴木 左文 淺田 雅洋 Adrian Dobroiu	鈴木 左文 淺田 雅洋 MAI VANTA 鈴木 雄成

お問い合わせ先

東京工業大学

研究・産学連携本部

T E L 03-5734-2445

FAX 03-5734-2482

e-mail sangaku@sangaku.titech.ac.jp