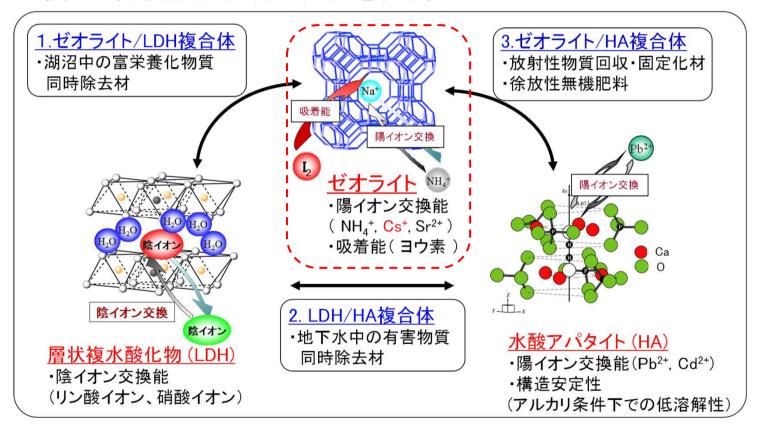


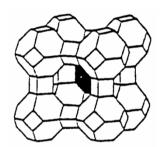
地熱水中のシリカから直接メソポーラスシリカを製造

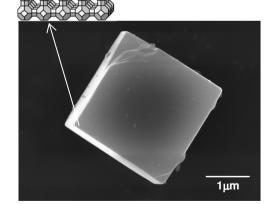
法政大学 生命科学部 環境応用化学科教授 渡邊雄二郎


令和7年7月10日

研究室での主な取り組み

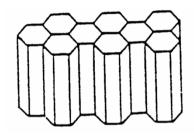
水及び土壌環境の修復を目的に、<u>汚染水中の溶存化学種の動態</u>や 汚染土壌中の鉱物種を詳細に分析評価し、対象汚染物質の回収に適した 環境に優しい高機能性材料の開発を行う。

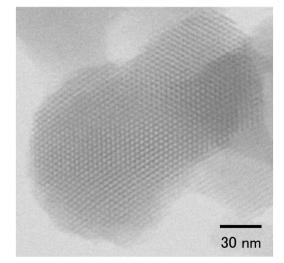



吸着剤の分類

IUPAC (International Union of Pure and Applied Chemistry)の分類

ミクロポア ~2 nm

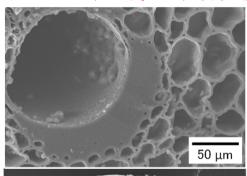

1 nm ←→ ゼオライト


ゼオライトAのSEM像

✓ 法政大学

メソポア 2~50 nm

MCM-41

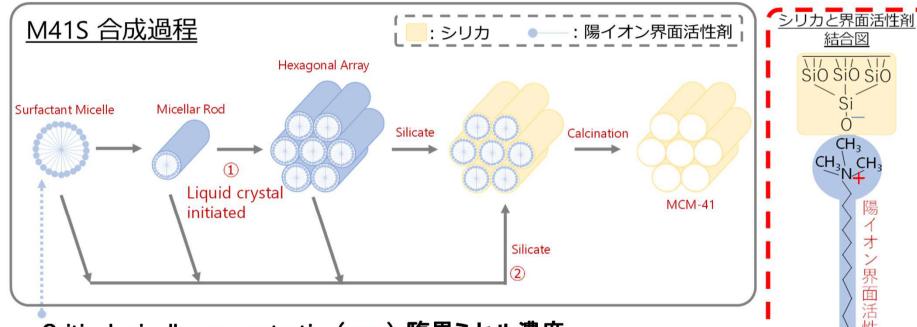



MCM-41 の TEM像

天然に存在しない 高価な材料!

マクロポア 50 nm~

シリカゲル、珪藻土、活性炭



活性炭(上)と珪藻土(下)の SEM像

メソポーラスシリカの合成過程

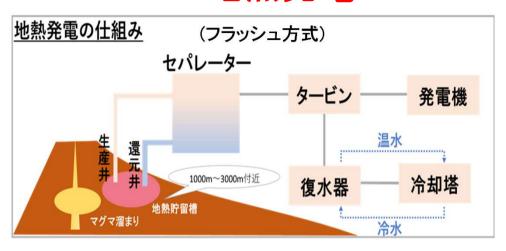
Roth, W. J, et al, Studies in Surface and Catalysis 157, 2005, 91-109.

Critical micelle concentration(cmc): 臨界ミセル濃度 →ミセル形成に必要な界面活性剤の最小濃度

用途

- •触媒 •吸着剤
- ・イオン交換剤 ・光学材料
- ・太陽光発電用ソーラーパネル

大きな比表面積(約1000m²/g)


自由を生き抜く実践知

オン界面活性剤(CTAB

CH₃ CH₃/ CH₃

新技術説明会 New Technology Presentation Meetings!

地熱発電

問題点

- ロード時間が長い・開発地域の合意
- 技術的課題(シリカスケール問題)

シリカ重合速度:

 $-dC/dt = k (C - C_e)^n$

k : rate constant

C: dissolved silica concentration

C_e: solubility of amorphous silica

n: reaction order (n > 0)

高温、高pHがシリカのポリマー化を促進

対策

①シリカスケールの除去

→産業廃棄物(処理コスト増)

②シリカスケール抑制法, 有用資源化

・高温還元法:フラッシュ時、重合進行

•pH調整法:酸による配管の劣化

-薬剤添加法:沈殿物の資源化が困難

(CaO,臭化セチルトリメチルアンモニウム(CTAB) etc..)

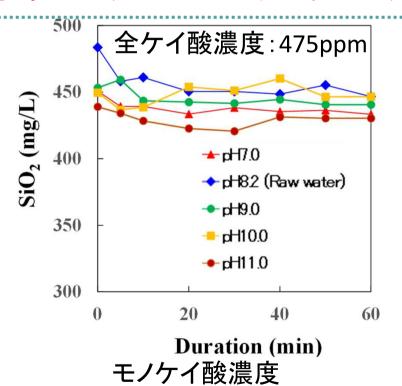
加藤耕一, 上田晃 J. Soc. Inorg. Mater. Jpn., 17, 436-443 (2010).

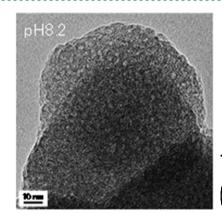
CTABを用いたメソポーラスシリカの合成

メソポーラスシリカ合成に関連した先行研究

CTABを用いた地熱水中のシリカの除去: 少量のCTAB(CTA+)とポリケイ酸が反応 ⇒重合することによる沈殿(非晶質シリカ)

H. Kitsuki et al., J. Geo. Res. Soc. Jpn., 8, 1-14 (1985).


シリカスケール(沈殿物)を用いたメソポーラスシリカの合成:アルカリ条件下でのシリカスケールとCTABとの反応(沈殿物との反応)


S.A. Bagshaw et al., Micro. Meso. Mater., 39, 67-75 (2000).

希薄な地熱水中のシリカからメソポーラスシリカを直接合成

地熱水の特長

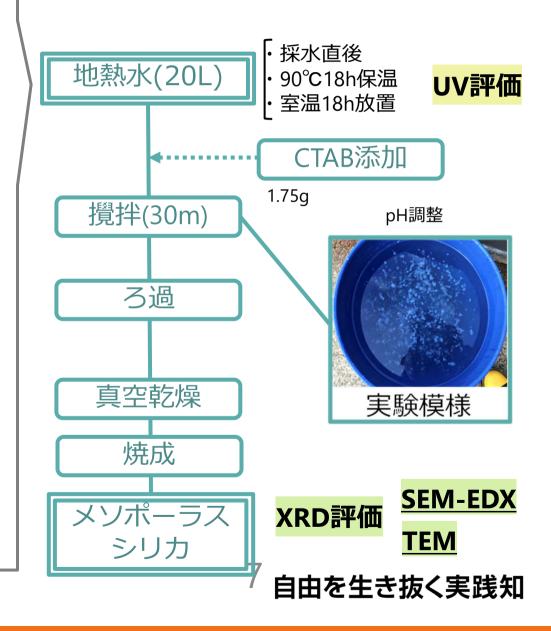
- ▶ モノケイ酸で多く存在
- ▶ 80~90 ℃の水温 メソポーラスシリカが 合成可能な条件
- ➤ AIを微量に含有 Si/AI=267(mol比)

TEM像 (pH8.2)

目的

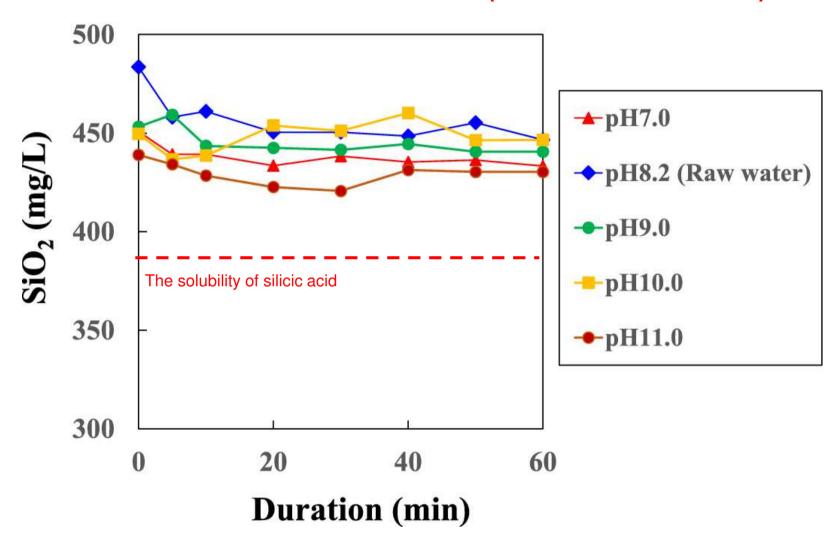
地熱水から合成した メソポーラスシリカの 特性評価

地熱水の 化学組成

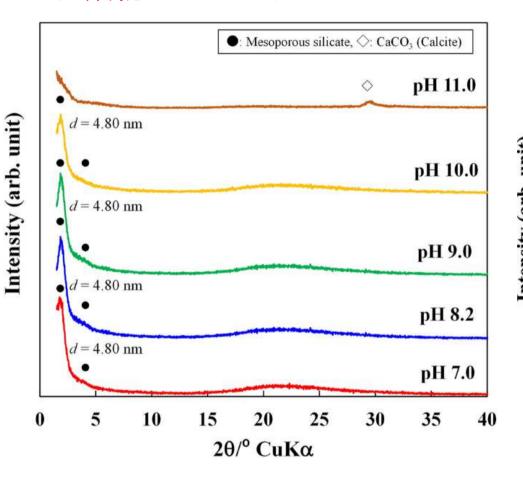

Dissolved species	Concentration
	(mg/L)
Na ⁺	406
\mathbf{K}^{+}	41.2
Ca^{2+}	15.5
Mg^{2+}	< 0.01
$\mathrm{Fe^{2+}}$	< 0.01
Al^{3+}	0.8
Cl-	431
SO_4^{2-}	225
$\mathrm{HCO_{3}^{-}}$	86
SiO_2	475
рН	8.2
EC (mS/m)	201

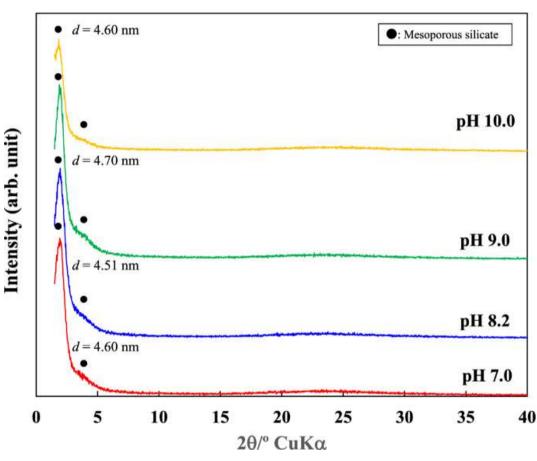
Data supplied by Mitsubishi Material Co. Ltd.

Date of sampling: 2020/7/21


法政大学

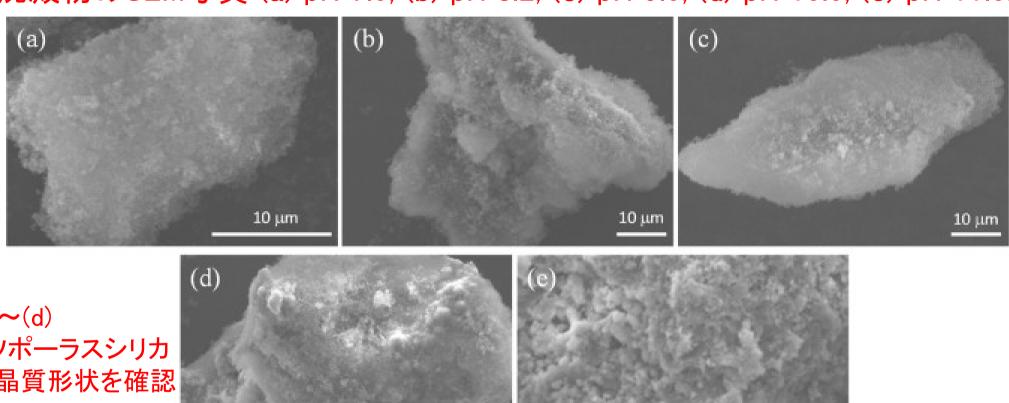
地熱水を用いた メソポーラスシ<u>リカの合成</u>


モノケイ酸濃度(大沼地熱発電所)



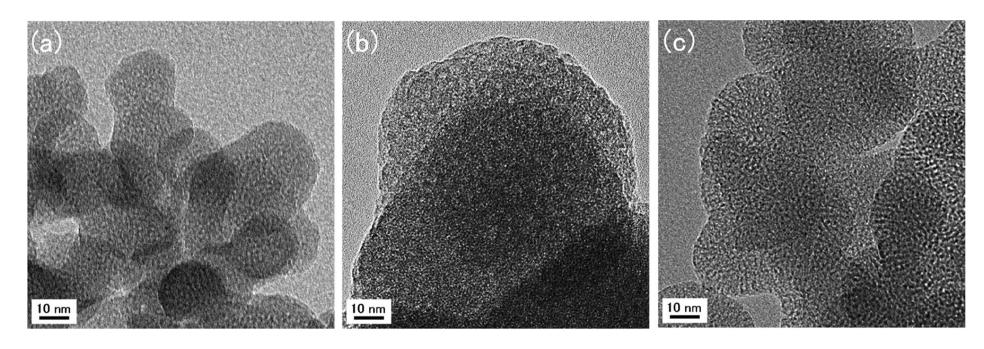
新技術説明会 New Technology Presentation Meetings!

沈殿物のXRDパターン

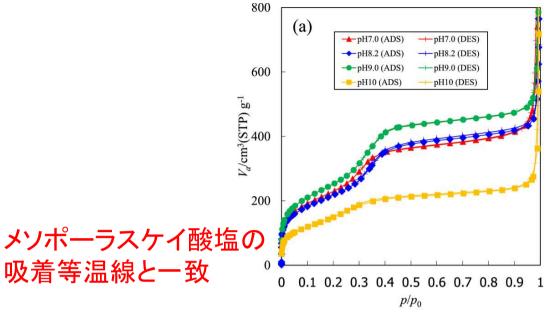

焼成物のXRDパターン

メソポーラス構造の回折ピークを確認

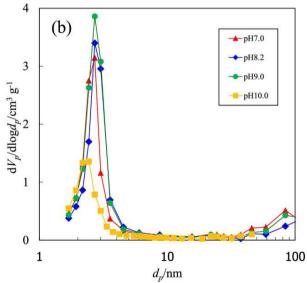
沈殿物のSEM写真 (a) pH 7.0, (b) pH 8.2, (c) pH 9.0, (d) pH 10.0, (e) pH 11.0.


10 µm

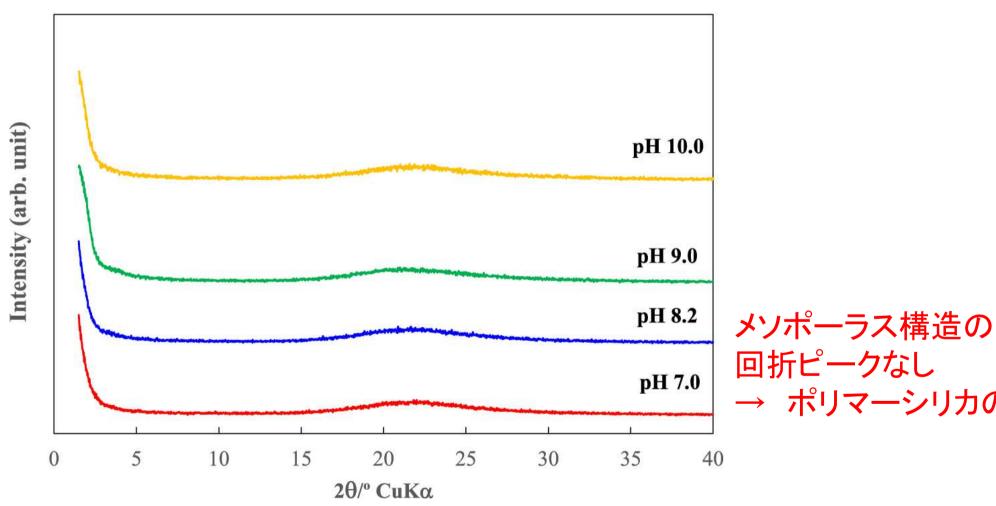
 $(a) \sim (d)$ メソポーラスシリカ 非晶質形状を確認


焼成した沈殿物のTEM写真 (a) pH 7.0, (b) pH 8.2, (c) pH 9.0

2~3 nm のメソ細孔を確認

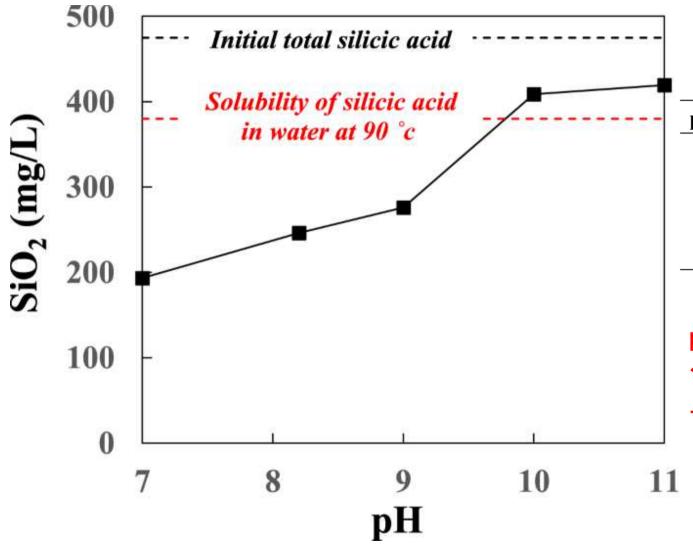

吸着等温線と一致

焼成した沈殿物のN₂吸着等温線 と細孔分布


рН	Surface area (m²/g)	Pore diameter (nm)	Pore volume (cm ³ /g)
7.0	834	2.8	0.6
8.2	814	2.8	0.6
9.0	919	2.8	0.7
10.0	551	2.6	0.4

pH7~9 で800 m²/g以上の高い 比表面積

4週間以上経過後の地熱水から作製した沈殿物のXRDパターン



→ ポリマーシリカのため

新技術説明会

合成pHとシリカ濃度の関係

沈殿物の化学組成(wt%)

pН	SiO ₂	Al_2O_3	Ca	Na	K	Cl
7	46.2	2.23	0.00	0.02	0.00	0.23
8	44.5	2.25	0.08	0.13	0.15	0.27
9	48.9	2.29	0.02	0.00	0.03	0.13
10	45.8	3.78	0.04	0.01	0.02	0.07
11	35.5	1.11	16.61	0.65	0.05	0.30

pH7~9 シリカの溶解度以下 → シリカスケールの抑制

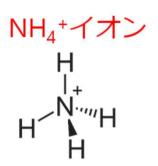
新技術説明会 New Technology Presentation Meetings!

アンモニウムイオン吸着性

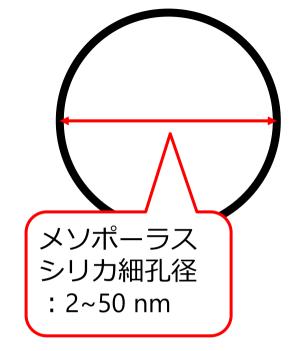
評価:アンモニウムイオン吸着試験

生成物 0.1 g +

10 ppm, 100 ppm NH₄Cl 30 mL

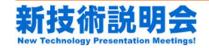

室温 24 h 50 rpm 接触

固液分離



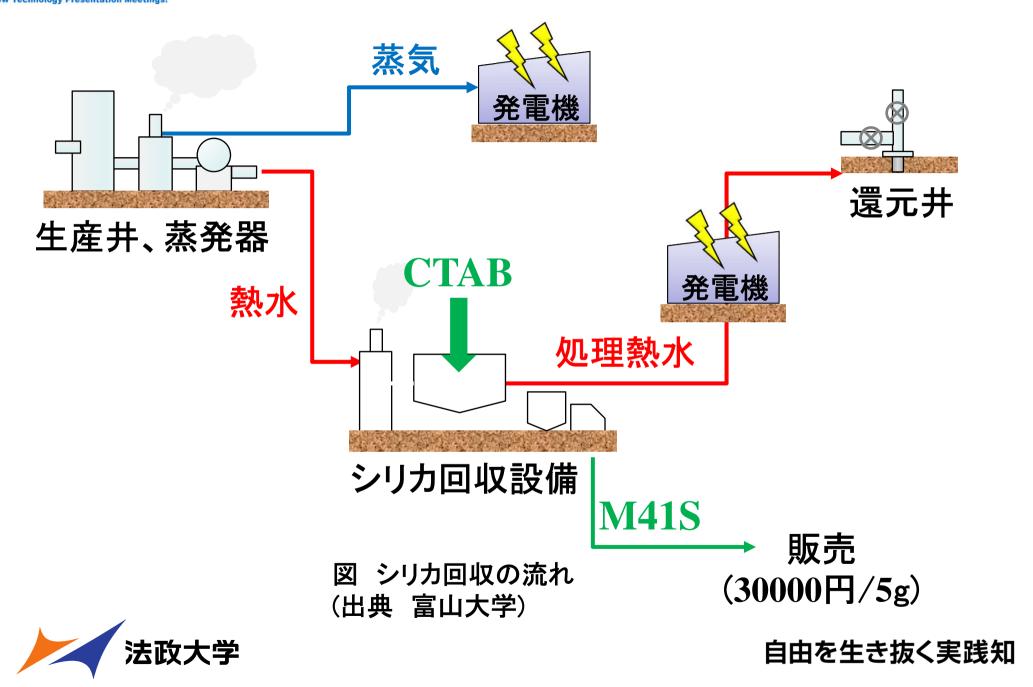
液相:アンモニウムイオン分析 (インドフェノールブルー法)

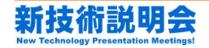
直径:


0.35nm

地熱水から作製したメソポーラスシリカは イオン交換性を有しているため アンモニウムイオンを吸着した。

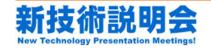
試料名	NH ₄ +初期濃度 [mmol/L]	吸着量 [mmol/g]	吸着率 [%]
地熱発電所の地熱水を用いて	0.53 (10 ppm)	0.079	49.4
合成したメソポーラスシリカ	5.33 (100 ppm)	0.760	47.5
オルトケイ酸ナトリウム を用いて	0.53 (10 ppm)	0.000	0.0
合成したメソポーラスシリカ	5.33 (100 ppm)	0.070	4.4




新技術の特徴・従来技術との比較

- 本技術は地熱水から凝集されたシリカ沈殿物からではなく、 シリカ濃度が低濃度である地熱水を用いてメソポーラスシリカ を直接合成することができる。
- ・地熱水からのシリカ析出を抑制する技術としてpH制御や温度制御等が報告されているが、効率性等の課題が残っている。本技術は、シリカ析出を抑制すると共に、有用材料であるメソポーラスシリカを得る技術であり、極めて有用な技術である。

新技術説明会



想定される用途

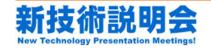
- 本技術の特徴を生かすためには、分離技術 (泡沫分離等)を確立することで連続製造のメ リットが大きいと考えられる。
- ・また、界面活性剤の再利用にも繋がる。
- また、作製されたメソポーラスシリカに着目すると、触媒や環境浄化といった分野や用途に 展開することも可能と思われる。

実用化に向けた課題

- 現在、地熱水からメソポーラスシリカが合成可能なところまで開発済み。しかし、実用規模の分離・界面活性剤再利用の点が未解決である。
- 今後、泡沫分離や他のシリカ含有環境水からのメソポーラスシリカの合成について実験データを取得していく。

社会実装への道筋

時期	取り組む課題や明らかにしたい原理等	社会実装へ取り組みについて記載
基礎研究	・地熱水からメソポーラスケイ酸の合成技術は確立	
現在	・連続的な分離・界面活性剤再利用が実現	
2年後	・設備設計の進展 ・連続分離・再利用に関する技術が実現	:JSTのA-STEP事業等へ応募し研究 資金獲得
5年後	・地熱発電所における製造プロセスの評価(メソポーラスシリカの連続合成)	評価基礎データの提供 サンプル提供が実現
10年後	用途に応じた各種メソポーラスすシリカの製造	サンプル提供 試験サービスの実現



企業への期待

- 未解決の分離・回収技術については、泡沫分離等の技術により克服できると考えている。
- 地熱関連、多孔質ケイ酸塩の製造に関する技術を持つ、企業との共同研究を希望。
- また、地熱水の利用、その他シリカスケール等の対策を検討している、実施している企業、地熱、環境分野への展開を考えている企業には、本技術の導入が有効と思われる。

企業への貢献、PRポイント

- 本技術は低コストでメソポーラスシリカを製造可能なため、連続分離・回収技術を確立することでより企業に貢献できると考えている。
- 本技術の導入にあたり必要な追加実験を行う ことで科学的な裏付けを行うことが可能。
- 本格導入にあたっての技術指導

本技術に関する知的財産権

• 発明の名称

: メソポーラスケイ酸の合成 方法及び合成装置、並びに 地熱発電装置

• 出願番号

: 特願2020-158947

(特許第7539139)

• 出願人

: 法政大学

• 発明者

:渡邊雄二郎

お問い合わせ先

法政大学 研究開発センター リエゾンオフィス

TEL 042-387-6501

FAX 042 - 387 - 6335

e-mail liaison@ml.hosei.ac.jp

