

多重刺激によって分解を開始する 循環指向ポリマー

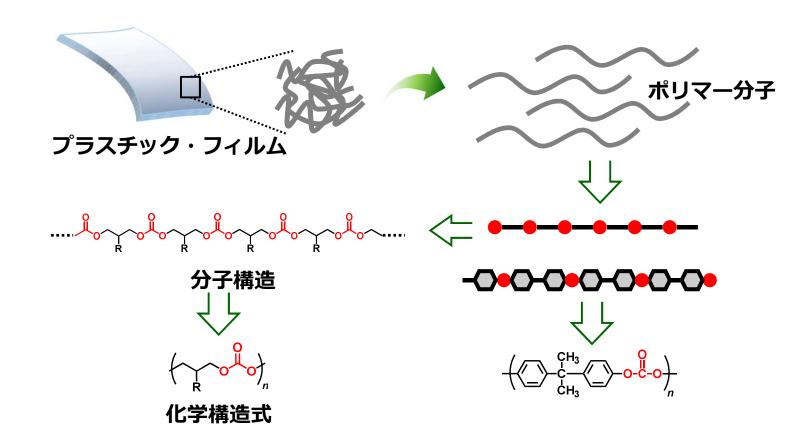
2025年9月2日

京都工芸繊維大学 繊維学系 教授 福島 和樹

.

本技術の要点・想定用途

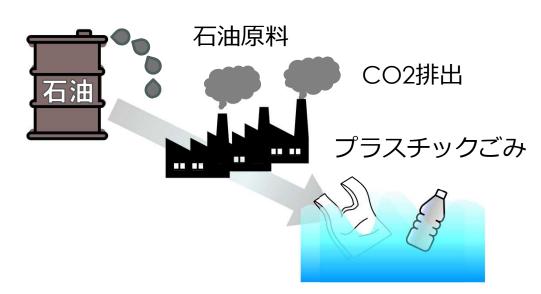
要点

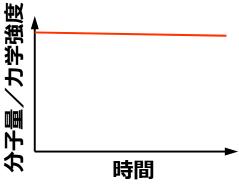

 光(波長 365 nm)と水の二重刺激によって分解する、ガラス 転移温度100°Cの脂肪族ポリカーボネートを開発しました。 このオンデマンド分解システムにより、従来の問題であった 物性と分解のトレードオフの解消を可能にしました。

想定用途

- 既存の樹脂への添加剤や共重合成分として適用が可能です。
- 単独での樹脂として、PSやPMMAを代替する透明材料、光学 材料、電子部材への応用が期待できます。
- リソグラフィや接着材への展開も可能です。

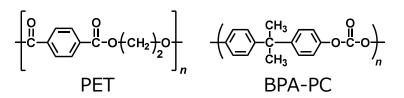
序:プラスチックと高分子




技術開発の背景

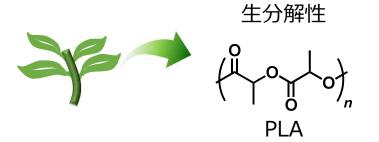
現在、プラスチックが抱える問題として、

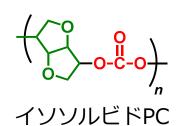
- 石油資源利用によるCO2排出問題
- 環境中に半永久的に残留する廃棄物問題


がある

従来技術とその問題点(1)

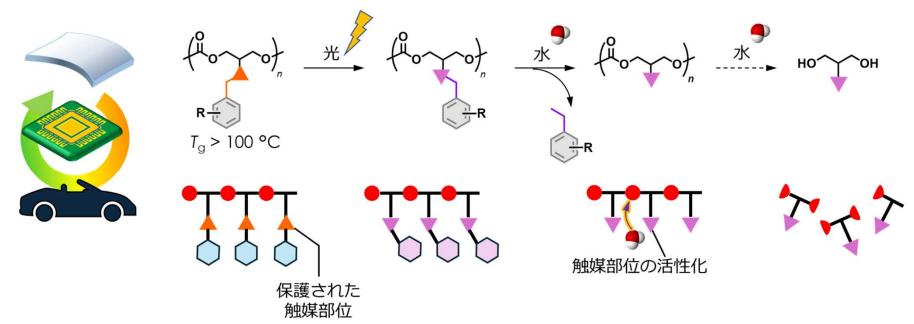
- ▶ リサイクル
 - 対象のポリマーが限定的
 - マテリアルリサイクルの限界
 - サーマルリサイクルが制限される可能性
- ▶ 生分解性ポリマーによる置き換え
 - ポリマー種が限定的
 - 従来プラ比べて物性に課題
 - 分解制御と耐久性のバランス



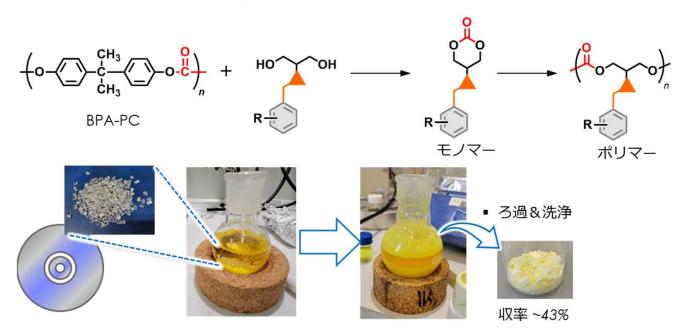


非分解性

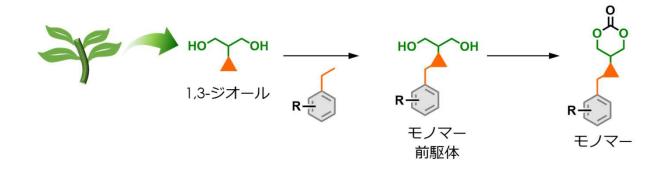
従来技術とその問題点(2)


- ▶ バイオベースポリマー (バイオマス由来ポリマー)
 - 化石資源依存からの脱却に寄与(カーボンニュートラル)
 - 非分解性ポリマーは回収・再利用によって環境流出を防ぐ必要がある
 - バイオベースかつ生分解性のポリマーは限定的

$$\begin{bmatrix}
O & O & O \\
II & O & II \\
C & O & C \\
O &$$

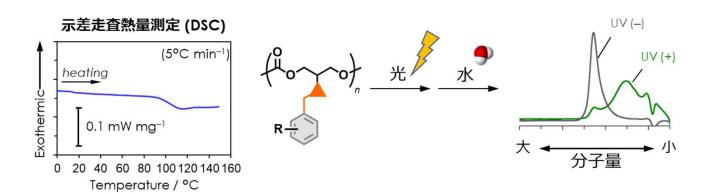

新技術の特徴(1)

- 加水分解安定性の高い脂肪族ポリカーボネート
- ガラス転移温度100°C以上を達成(ポリスチレンやPMMAと同等)
- 光と水の二重刺激で分解が開始(一方では分解しない)


新技術の特徴(2)

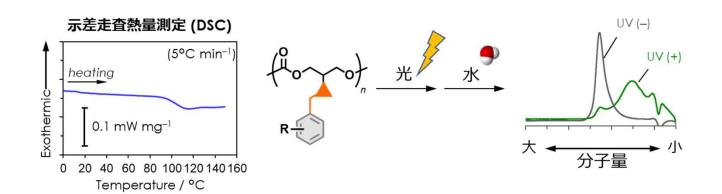
- モノマーはビスフェノールAポリカーボネートの分解反応から生成可能
- 反応後に純度の高い沈殿物として生成するため、単離効率が高い

新技術の特徴(3)

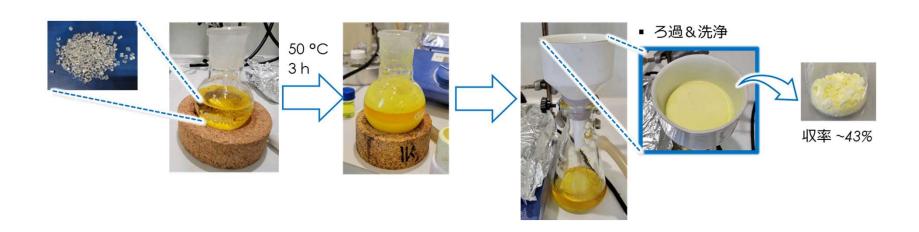


- モノマーの出発物質(1,3-ジオール)は天然由来分子である
- 1,3-ジオールの生合成経路も見出されている
- 得られるポリマーは部分的にバイオベースとなる

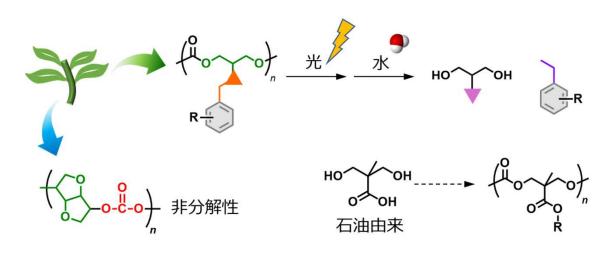
新技術の特徴・従来技術との比較(1)


- 従来技術の問題点であった、分解と耐久性のトレードオフを 解消することに成功した。
- 従来の単一刺激による分解システムでは、使用条件として水分(湿度)や光を避ける必要があったが、多重刺激を必要とすることで安定使用が可能な条件が拡大した。

新技術の特徴・従来技術との比較(2)


- 従来技術の問題点であった、脂肪族ポリカーボネートの**乏し** い熱特性を改良することに成功した。
- 多くの生分解性ポリエステルが結晶性であるのに対して、本ポリマーは非晶性のため、透明性が期待される。

新技術の特徴・従来技術との比較(3)


- 従来技術の問題点であった、環状カーボネートモノマーの合成・**単離効率を改良**することに成功した。
- モノマーが沈殿生成するため、反応後のろ過と洗浄のみで重 合グレードのモノマーが得られる。

新技術の特徴・従来技術との比較(4)

- 従来技術の問題点であった、脂肪族ポリカーボネートの原料 の一部をバイオベース化することに成功した。
- **適度に高い熱安定性**を示すポリカーボネートでありながら**易 分解性との両立**が可能となった。

想定される用途

- 本技術の特徴を生かすためには、既存の樹脂への添加剤や共 重合成分として適用することで物性向上および分解制御(分 解スイッチ機構)のメリットが大きいと考えられる。
- ◆ 上記以外に、単独での樹脂としての利用も期待される。
- 熱特性的にPSやPMMAの代替が可能。透明材料、光学材料、 電子部材への応用が期待される。
- また、達成された二段階の分解スイッチ機構に着目すると、 リソグラフィや接着材といった分野や用途に展開することも 可能と思われる。

実用化に向けた課題

- 現在、ポリマー分子量について数平均2万程度が可能なところまで開発済み。樹脂用途には10万程度までの向上が好ましいが未解決である。
- 今後、高分子量化技術の開発ともに、力学特性(引張・粘弾性)について実験データを取得し、樹脂用途や添加剤に適用していく場合の条件設定を行っていく。
- **生分解・環境分解性**評価も実施することで、分解性材料としての位置づけが明らかとなる。
- 実用化に向け、バルク重合技術を確立する必要もあり。

社会実装への道筋

時期	取り組む課題や明らかにしたい原理等	社会実装へ取り組みについて記載
基礎研究	• 分解システムの基礎技術の検証が完了	
現在	類似体や誘導体への展開を検討中高分子量化分解プロセスの理解にもとづく分子設計指針の確立用途探索	NEDO若サポ事業にて実施中スケールアップ合成
3年後	・ 既存生分解プラの物性強化および分解制御を実証・ アップサイクルプロセスの効率化、環境負荷低減	JSTのALCA-Next事業やERCA環境 研究総合推進費への応募民間企業との連携、技術移転
5年後	・ポリマー分解物の再利用経路の確立・環境分解性の評価・単独体での材料化を実現 (分子量、熱・力学特性、成形性をクリア)	・ 評価基礎データの提供・ サンプル提供が実現
10年後	・ 原料合成のバイオプロセス範囲の拡大(オールバイオベース化)・ 分解スイッチの性能向上(有効波長・pHの拡大)	• 透明材料の一部において実用化

企業への期待

- 未解決の高分子量化については、**高活性触媒**の技術により克服できると考えている。
- 縮合系高分子合成の技術を持つ、企業との共同研究を希望。 ライセンス利用も歓迎。
- また、代替プラを開発中の企業、既存の生分解性プラの物性 強化や分解制御技術を探索中の企業、既存ポリカーボネート のリサイクル・有効利用を考えている企業には、本技術の導 入が有効と思われる。

企業への貢献、PRポイント

- 本技術は分解性ポリマーによる既存プラスチック代替を可能にし、既存樹脂(ポリカーボネート)のリサイクル(アップサイクル)技術の提案も可能となり、物質循環やサステイナビリティに取り組む企業に2つの方向性から貢献できると考えている。
- 本技術の導入にあたり必要な追加実験を行うことで科学的な 裏付けを行うことが可能。
- 本格導入にあたっての技術指導等
- サンプル提供も要相談のうえ可能

本技術に関する知的財産権

発明の名称:

ポリカーボネート樹脂およびその製造方法、ポリカーボネート樹脂製造用単量体、ポリカーボネート樹脂の分解方法ならびに分解組成物

• 出願番号:特願2024-213897

• 出願人:京都工芸繊維大学

● 発明者:福島和樹,加藤隆史,ゴン イーチェン

産学連携の経歴

- 2004年-2007年 大手化学メーカーと共同研究実施(共同特許成立)
- 2007年-2011年 IBMアルマデン研究所 博士研究員
- 2014年-2018年 化学メーカー4社と共同研究実施
- 2018年-2023年 化学メーカー1社と共同研究実施(共同特 許成立)
- ◆ 2021年- JSTさきがけ、JST未来社会創造事業(ともに 研究代表者)に採択
- 2024年- JST CREST(主たる共同研究者)、NEDO若サポ(研究代表者)に採択

お問い合わせ先

京都工芸繊維大学

産学公連携推進センター 知的財産戦略室

(研究推進・産学連携課 知的財産係)

Tel 075-724-7039

Mail chizai@kit.ac.jp

Web https://www.liaison.kit.ac.jp/